When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Antibonding molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Antibonding_molecular_orbital

    Antibonding orbitals are often labelled with an asterisk (*) on molecular orbital diagrams. In homonuclear diatomic molecules, σ* (sigma star) antibonding orbitals have no nodal planes passing through the two nuclei, like sigma bonds, and π* (pi star) orbitals have one nodal plane passing through the two nuclei, like pi bonds.

  3. Sigma bond - Wikipedia

    en.wikipedia.org/wiki/Sigma_bond

    According to the sigma bond rule, the number of sigma bonds in a molecule is equivalent to the number of atoms plus the number of rings minus one. N σ = N atoms + N rings − 1. This rule is a special-case application of the Euler characteristic of the graph which represents the molecule. A molecule with no rings can be represented as a tree ...

  4. Localized molecular orbitals - Wikipedia

    en.wikipedia.org/wiki/Localized_molecular_orbitals

    These orbitals and typically given the notation σ (sigma bonding), π (pi bonding), n (occupied nonbonding orbital, "lone pair"), p (unoccupied nonbonding orbital, "empty p orbital"; the symbol n* for unoccupied nonbonding orbital is seldom used), π* (pi antibonding), and σ* (sigma antibonding). (Woodward and Hoffmann use ω for nonbonding ...

  5. Molecular orbital diagram - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_diagram

    This MO is called the bonding orbital and its energy is lower than that of the original atomic orbitals. A bond involving molecular orbitals which are symmetric with respect to any rotation around the bond axis is called a sigma bond (σ-bond). If the phase cycles once while rotating round the axis, the bond is a pi bond (π-bond).

  6. Molecular orbital - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital

    The bond order, or number of bonds, of a molecule can be determined by combining the number of electrons in bonding and antibonding molecular orbitals. A pair of electrons in a bonding orbital creates a bond, whereas a pair of electrons in an antibonding orbital negates a bond.

  7. Hyperconjugation - Wikipedia

    en.wikipedia.org/wiki/Hyperconjugation

    Hyperconjugation affects several properties. [6] [10]Bond length: Hyperconjugation is suggested as a key factor in shortening of sigma bondsbonds). For example, the single C–C bonds in 1,3-butadiene and propyne are approximately 1.46 Å in length, much less than the value of around 1.54 Å found in saturated hydrocarbons.

  8. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The corresponding anti-bonding orbitals are higher in energy than the anti-bonding orbitals from σ bonding so, after the new π bonding orbitals are filled with electrons from the metal d-orbitals, Δ O has increased and the bond between the ligand and the metal strengthens.

  9. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Common bonding orbitals are sigma (σ) orbitals which are symmetric about the bond axis and pi (π) orbitals with a nodal plane along the bond axis. Less common are delta (δ) orbitals and phi (φ) orbitals with two and three nodal planes respectively along the bond axis. Antibonding orbitals are signified by the addition of an asterisk.