When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    For example, x ∗ is a strict global maximum point if for all x in X with x ≠ x ∗, we have f(x ∗) > f(x), and x ∗ is a strict local maximum point if there exists some ε > 0 such that, for all x in X within distance ε of x ∗ with x ≠ x ∗, we have f(x ∗) > f(x). Note that a point is a strict global maximum point if and only if ...

  3. Lagrange multiplier - Wikipedia

    en.wikipedia.org/wiki/Lagrange_multiplier

    The Lagrange multiplier theorem states that at any local maximum (or minimum) of the function evaluated under the equality constraints, if constraint qualification applies (explained below), then the gradient of the function (at that point) can be expressed as a linear combination of the gradients of the constraints (at that point), with the ...

  4. Sample maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Sample_maximum_and_minimum

    The sample maximum and minimum are the least robust statistics: they are maximally sensitive to outliers.. This can either be an advantage or a drawback: if extreme values are real (not measurement errors), and of real consequence, as in applications of extreme value theory such as building dikes or financial loss, then outliers (as reflected in sample extrema) are important.

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  6. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  7. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    If D(a, b) = 0 then the point (a, b) could be any of a minimum, maximum, or saddle point (that is, the test is inconclusive). Sometimes other equivalent versions of the test are used. In cases 1 and 2, the requirement that f xx f yy − f xy 2 is positive at ( x , y ) implies that f xx and f yy have the same sign there.

  8. Maximum cut - Wikipedia

    en.wikipedia.org/wiki/Maximum_cut

    The canonical optimization variant of the above decision problem is usually known as the Maximum-Cut Problem or Max-Cut and is defined as: Given a graph G, find a maximum cut. The optimization variant is known to be NP-Hard. The opposite problem, that of finding a minimum cut is known to be efficiently solvable via the Ford–Fulkerson algorithm.

  9. Convex hull algorithms - Wikipedia

    en.wikipedia.org/wiki/Convex_hull_algorithms

    Find the two points with the lowest and highest x-coordinates, and the two points with the lowest and highest y-coordinates. (Each of these operations takes O ( n ).) These four points form a convex quadrilateral , and all points that lie in this quadrilateral (except for the four initially chosen vertices) are not part of the convex hull.