Search results
Results From The WOW.Com Content Network
The black hole entropy is proportional to the area of its event horizon . The fact that the black hole entropy is also the maximal entropy that can be obtained by the Bekenstein bound (wherein the Bekenstein bound becomes an equality) was the main observation that led to the holographic principle. [2]
According to the Bekenstein bound, the entropy of a black hole is proportional to the number of Planck areas that it would take to cover the black hole's event horizon.. In physics, the Bekenstein bound (named after Jacob Bekenstein) is an upper limit on the thermodynamic entropy S, or Shannon entropy H, that can be contained within a given finite region of space which has a finite amount of ...
Black hole entropy is deeply puzzling – it says that the logarithm of the number of states of a black hole is proportional to the area of the horizon, not the volume in the interior. [10] Later, Raphael Bousso came up with a covariant version of the bound based upon null sheets. [18]
In 1972, Bekenstein was the first to suggest that black holes should have a well-defined entropy. He wrote that a black hole's entropy was proportional to the area of its (the black hole's) event horizon. Bekenstein also formulated the generalized second law of thermodynamics, black hole thermodynamics, for systems including black holes.
A black hole with the mass of a car would have a diameter of about 10 −24 m and take a nanosecond to evaporate, during which time it would briefly have a luminosity of more than 200 times that of the Sun. Lower-mass black holes are expected to evaporate even faster; for example, a black hole of mass 1 TeV/c 2 would take less than 10 −88 ...
when E c =E, which is the Bekenstein bound. The Cardy–Verlinde formula was later shown by Kutasov and Larsen [4] to be invalid for weakly interacting CFTs. In fact, since the entropy of higher dimensional (meaning n>1) CFTs is dependent on exactly marginal couplings, it is believed that a Cardy formula for the entropy is not achievable when n>1.
Forming a black hole is the most efficient way to compress mass into a region, and this entropy is also a bound on the information content of any sphere in space time. The form of the result strongly suggests that the physical description of a gravitating theory can be somehow encoded onto a bounding surface.
(Supermassive black holes up to 21 billion (2.1 × 10 10) M ☉ have been detected, such as NGC 4889.) [16] Unlike stellar mass black holes, supermassive black holes have comparatively low average densities. (Note that a (non-rotating) black hole is a spherical region in space that surrounds the singularity at its center; it is not the ...