When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Probability density function - Wikipedia

    en.wikipedia.org/wiki/Probability_density_function

    The probability density function is nonnegative everywhere, and the area under the entire curve is equal to 1. The terms probability distribution function and probability function have also sometimes been used to denote the probability density function. However, this use is not standard among probabilists and statisticians.

  3. List of probability distributions - Wikipedia

    en.wikipedia.org/wiki/List_of_probability...

    The Bates distribution is the distribution of the mean of n independent random variables, each of which having the uniform distribution on [0,1]. The logit-normal distribution on (0,1). The Dirac delta function, although not strictly a

  4. Probability distribution - Wikipedia

    en.wikipedia.org/wiki/Probability_distribution

    Figure 1: The left graph shows a probability density function. The right graph shows the cumulative distribution function. The value at a in the cumulative distribution equals the area under the probability density curve up to the point a. Absolutely continuous probability distributions can be described in several ways.

  5. Normal distribution - Wikipedia

    en.wikipedia.org/wiki/Normal_distribution

    The probability density, cumulative distribution, and inverse cumulative distribution of any function of one or more independent or correlated normal variables can be computed with the numerical method of ray-tracing [41] (Matlab code). In the following sections we look at some special cases.

  6. Beta distribution - Wikipedia

    en.wikipedia.org/wiki/Beta_distribution

    In probability theory and statistics, the beta distribution is a family of continuous probability distributions defined on the interval [0, 1] or (0, 1) in terms of two positive parameters, denoted by alpha (α) and beta (β), that appear as exponents of the variable and its complement to 1, respectively, and control the shape of the distribution.

  7. Weibull distribution - Wikipedia

    en.wikipedia.org/wiki/Weibull_distribution

    For k > 1, the density function tends to zero as x approaches zero from above, increases until its mode and decreases after it. The density function has infinite negative slope at x = 0 if 0 < k < 1, infinite positive slope at x = 0 if 1 < k < 2 and null slope at x = 0 if k > 2. For k = 1 the density has a finite negative slope at x = 0.

  8. Log-normal distribution - Wikipedia

    en.wikipedia.org/wiki/Log-normal_distribution

    The distribution of has no closed-form expression, but can be reasonably approximated by another log-normal distribution at the right tail. [36] Its probability density function at the neighborhood of 0 has been characterized [35] and it does not resemble any log

  9. Convolution of probability distributions - Wikipedia

    en.wikipedia.org/wiki/Convolution_of_probability...

    The probability distribution of the sum of two or more independent random variables is the convolution of their individual distributions. The term is motivated by the fact that the probability mass function or probability density function of a sum of independent random variables is the convolution of their corresponding probability mass functions or probability density functions respectively.