When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Simple harmonic motion - Wikipedia

    en.wikipedia.org/wiki/Simple_harmonic_motion

    The other end of the spring is connected to a rigid support such as a wall. If the system is left at rest at the equilibrium position then there is no net force acting on the mass. However, if the mass is displaced from the equilibrium position, the spring exerts a restoring elastic force that obeys Hooke's law.

  3. Harmonic oscillator - Wikipedia

    en.wikipedia.org/wiki/Harmonic_oscillator

    When the spring is stretched or compressed, kinetic energy of the mass gets converted into potential energy of the spring. By conservation of energy, assuming the datum is defined at the equilibrium position, when the spring reaches its maximal potential energy, the kinetic energy of the mass is zero.

  4. Restoring force - Wikipedia

    en.wikipedia.org/wiki/Restoring_force

    Pulling the spring to a greater length causes it to exert a force that brings the spring back toward its equilibrium length. The amount of force can be determined by multiplying the spring constant, characteristic of the spring, by the amount of stretch, also known as Hooke's Law. Another example is of a pendulum.

  5. Hooke's law - Wikipedia

    en.wikipedia.org/wiki/Hooke's_law

    By pulling slightly on the mass and then releasing it, the system will be set in sinusoidal oscillating motion about the equilibrium position. To the extent that the spring obeys Hooke's law, and that one can neglect friction and the mass of the spring, the amplitude of the oscillation will remain constant; and its frequency f will be ...

  6. Series and parallel springs - Wikipedia

    en.wikipedia.org/wiki/Series_and_parallel_springs

    Equivalent Spring Constant (Series) When putting two springs in their equilibrium positions in series attached at the end to a block and then displacing it from that equilibrium, each of the springs will experience corresponding displacements x 1 and x 2 for a total displacement of x 1 + x 2. We will be looking for an equation for the force on ...

  7. Spring (device) - Wikipedia

    en.wikipedia.org/wiki/Spring_(device)

    Zero-length springs are made by manufacturing a coil spring with built-in tension (A twist is introduced into the wire as it is coiled during manufacture; this works because a coiled spring unwinds as it stretches), so if it could contract further, the equilibrium point of the spring, the point at which its restoring force is zero, occurs at a ...

  8. Mechanical equilibrium - Wikipedia

    en.wikipedia.org/wiki/Mechanical_equilibrium

    Consequently, the object is in a state of static mechanical equilibrium. In classical mechanics, a particle is in mechanical equilibrium if the net force on that particle is zero. [1]: 39 By extension, a physical system made up of many parts is in mechanical equilibrium if the net force on each of its individual parts is zero. [1]: 45–46 [2]

  9. Oscillation - Wikipedia

    en.wikipedia.org/wiki/Oscillation

    The system is in an equilibrium state when the spring is static. If the system is displaced from the equilibrium, there is a net restoring force on the mass, tending to bring it back to equilibrium. However, in moving the mass back to the equilibrium position, it has acquired momentum which keeps it moving beyond that position, establishing a ...