When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Van 't Hoff equation - Wikipedia

    en.wikipedia.org/wiki/Van_'t_Hoff_equation

    Each linear fit has a different slope and intercept, which indicates different changes in enthalpy and entropy for each distinct mechanisms. The Van 't Hoff plot can be used to find the enthalpy and entropy change for each mechanism and the favored mechanism under different temperatures.

  3. Fundamental thermodynamic relation - Wikipedia

    en.wikipedia.org/wiki/Fundamental_thermodynamic...

    The relation is generally expressed as a microscopic change in internal energy in terms of microscopic changes in entropy, and volume for a closed system in thermal equilibrium in the following way. d U = T d S − P d V {\displaystyle \mathrm {d} U=T\,\mathrm {d} S-P\,\mathrm {d} V\,}

  4. Enthalpy - Wikipedia

    en.wikipedia.org/wiki/Enthalpy

    Enthalpy (/ ˈ ɛ n θ əl p i / ⓘ) is the sum of a thermodynamic system's internal energy and the product of its pressure and volume. [1] It is a state function in thermodynamics used in many measurements in chemical, biological, and physical systems at a constant external pressure, which is conveniently provided by the large ambient atmosphere.

  5. Enthalpy–entropy compensation - Wikipedia

    en.wikipedia.org/wiki/Enthalpyentropy...

    In thermodynamics, enthalpyentropy compensation is a specific example of the compensation effect. The compensation effect refers to the behavior of a series of closely related chemical reactions (e.g., reactants in different solvents or reactants differing only in a single substituent), which exhibit a linear relationship between one of the following kinetic or thermodynamic parameters for ...

  6. Thermodynamic equations - Wikipedia

    en.wikipedia.org/wiki/Thermodynamic_equations

    Entropy cannot be measured directly. The change in entropy with respect to pressure at a constant temperature is the same as the negative change in specific volume with respect to temperature at a constant pressure, for a simple compressible system. Maxwell relations in thermodynamics are often used to derive thermodynamic relations. [2]

  7. Entropy - Wikipedia

    en.wikipedia.org/wiki/Entropy

    Since an entropy is a state function, the entropy change of the system for an irreversible path is the same as for a reversible path between the same two states. [22] However, the heat transferred to or from the surroundings is different as well as its entropy change. We can calculate the change of entropy only by integrating the above formula.

  8. Relations between heat capacities - Wikipedia

    en.wikipedia.org/wiki/Relations_between_heat...

    If an infinitesimally small amount of heat is supplied to a system in a reversible way then, according to the second law of thermodynamics, the entropy change of the system is given by: d S = δ Q T {\displaystyle dS={\frac {\delta Q}{T}}\,}

  9. Maxwell relations - Wikipedia

    en.wikipedia.org/wiki/Maxwell_relations

    The structure of Maxwell relations is a statement of equality among the second derivatives for continuous functions. It follows directly from the fact that the order of differentiation of an analytic function of two variables is irrelevant (Schwarz theorem).