When.com Web Search

  1. Ad

    related to: tessellation shapes to cut out

Search results

  1. Results From The WOW.Com Content Network
  2. Tessellation - Wikipedia

    en.wikipedia.org/wiki/Tessellation

    Tessellation is used in manufacturing industry to reduce the wastage of material (yield losses) such as sheet metal when cutting out shapes for objects such as car doors or drink cans. [78] Tessellation is apparent in the mudcrack-like cracking of thin films [79] [80] – with a degree of self-organisation being observed using micro and ...

  3. Regular Division of the Plane - Wikipedia

    en.wikipedia.org/wiki/Regular_Division_of_the_Plane

    Regular Division of the Plane III, woodcut, 1957 - 1958.. Regular Division of the Plane is a series of drawings by the Dutch artist M. C. Escher which began in 1936. These images are based on the principle of tessellation, irregular shapes or combinations of shapes that interlock completely to cover a surface or plane.

  4. List of tessellations - Wikipedia

    en.wikipedia.org/wiki/List_of_tessellations

    Dual semi-regular Article Face configuration Schläfli symbol Image Apeirogonal deltohedron: V3 3.∞ : dsr{2,∞} Apeirogonal bipyramid: V4 2.∞ : dt{2,∞} Cairo pentagonal tiling

  5. Rep-tile - Wikipedia

    en.wikipedia.org/wiki/Rep-tile

    Such a shape necessarily forms the prototile for a tiling of the plane, in many cases an aperiodic tiling. A rep-tile dissection using different sizes of the original shape is called an irregular rep-tile or irreptile. If the dissection uses n copies, the shape is said to be irrep-n. If all these sub-tiles are of different sizes then the tiling ...

  6. Cairo pentagonal tiling - Wikipedia

    en.wikipedia.org/wiki/Cairo_pentagonal_tiling

    The union of all edges of a Cairo tiling is the same as the union of two tilings of the plane by hexagons.Each hexagon of one tiling surrounds two vertices of the other tiling, and is divided by the hexagons of the other tiling into four of the pentagons in the Cairo tiling. [4]

  7. Tesseractic honeycomb - Wikipedia

    en.wikipedia.org/wiki/Tesseractic_honeycomb

    The tesseract can make a regular tessellation of 4-dimensional hyperbolic space, with 5 tesseracts around each face, with Schläfli symbol {4,3,3,5}, called an order-5 tesseractic honeycomb. The Ammann–Beenker tiling is an aperiodic tiling in 2 dimensions obtained by cut-and-project on the tesseractic honeycomb along an eightfold rotational ...

  8. Tessellated pavement - Wikipedia

    en.wikipedia.org/wiki/Tessellated_pavement

    The origin of this type of tessellated pavement remains uncertain. The size and shape of these polygons appears to be dependent to a large extent on the grain size, texture, and coherence of the rock. This polygonal tessellation is best developed in relatively fine-grained, uniform, and siliceous or silicified sandstones. [1]

  9. Square tiling - Wikipedia

    en.wikipedia.org/wiki/Square_tiling

    In geometry, the square tiling, square tessellation or square grid is a regular tiling of the Euclidean plane. It has Schläfli symbol of {4,4}, meaning it has 4 squares around every vertex. Conway called it a quadrille. The internal angle of the square is 90 degrees so four squares at a point make a full 360 degrees.