Search results
Results From The WOW.Com Content Network
In numerical analysis, multivariate interpolation or multidimensional interpolation is interpolation on multivariate functions, having more than one variable or defined over a multi-dimensional domain. [1] A common special case is bivariate interpolation or two-dimensional interpolation, based on two variables or two dimensions.
Main page; Contents; Current events; Random article; About Wikipedia; Contact us; Help; Learn to edit; Community portal; Recent changes; Upload file
The simplest interpolation method is to locate the nearest data value, and assign the same value. In simple problems, this method is unlikely to be used, as linear interpolation (see below) is almost as easy, but in higher-dimensional multivariate interpolation, this could be a favourable choice for its speed and simplicity.
Trilinear interpolation is a method of multivariate interpolation on a 3-dimensional regular grid. It approximates the value of a function at an intermediate point ( x , y , z ) {\displaystyle (x,y,z)} within the local axial rectangular prism linearly, using function data on the lattice points.
Inverse distance weighting (IDW) is a type of deterministic method for multivariate interpolation with a known scattered set of points. The assigned values to unknown points are calculated with a weighted average of the values available at the known points.
Nearest-neighbor interpolation (also known as proximal interpolation or, in some contexts, point sampling) is a simple method of multivariate interpolation in one or more dimensions. Interpolation is the problem of approximating the value of a function for a non-given point in some space when given the value of that function in points around ...
Multivariate interpolation — the function being interpolated depends on more than one variable Barnes interpolation — method for two-dimensional functions using Gaussians common in meteorology; Coons surface — combination of linear interpolation and bilinear interpolation; Lanczos resampling — based on convolution with a sinc function
This page was last edited on 28 January 2020, at 04:45 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.