Search results
Results From The WOW.Com Content Network
In a buffer, a weak acid and its conjugate base (in the form of a salt), or a weak base and its conjugate acid, are used in order to limit the pH change during a titration process. Buffers have both organic and non-organic chemical applications. For example, besides buffers being used in lab processes, human blood acts as a buffer to maintain pH.
The sulfate ion carries an overall charge of −2 and it is the conjugate base of the bisulfate (or hydrogensulfate) ion, HSO − 4, which is in turn the conjugate base of H 2 SO 4, sulfuric acid. Organic sulfate esters, such as dimethyl sulfate, are covalent compounds and esters of sulfuric acid.
In chemistry, an acid–base reaction is a chemical reaction that occurs between an acid and a base.It can be used to determine pH via titration.Several theoretical frameworks provide alternative conceptions of the reaction mechanisms and their application in solving related problems; these are called the acid–base theories, for example, Brønsted–Lowry acid–base theory.
A buffer solution contains an acid and its conjugate base or a base and its conjugate acid. [2] Addition of the conjugate ion will result in a change of pH of the buffer solution. For example, if both sodium acetate and acetic acid are dissolved in the same solution they both dissociate and ionize to produce acetate ions.
In organosulfur chemistry, a sulfonate is a salt, anion or ester of a sulfonic acid. Its formula is R−S(=O) 2 −O −, containing the functional group −S(=O) 2 −O −, where R is typically an organyl group, amino group or a halogen atom. Sulfonates are the conjugate bases of sulfonic acids.
If it is the result of a reaction between a strong acid and a strong base, the result is a neutral salt. Weak acids reacted with weak bases can produce ionic compounds with both the conjugate base ion and conjugate acid ion, such as ammonium acetate. Some ions are classed as amphoteric, being able to react with either an acid or a base. [59]
A salt containing reactive cations undergo hydrolysis by which they react with water molecules, causing deprotonation of the conjugate acids. For example, the acid salt ammonium chloride is the main species formed upon the half neutralization of ammonia in aqueous solution of hydrogen chloride: [2] NH 3 + HCl(aq) → [NH 4] + Cl − (aq)
Steroid sulfation is one of the most common of all forms of steroid conjugation. Except for cholesterol, dehydroepiandrosterone sulfate is the most abundant of all plasma steroids. Estrone sulfate is the most abundant of all the estrogens in the human body. [3] Estrone sulfate is synthesized by the enzyme estrone sulfotransferase.