When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Excitation temperature - Wikipedia

    en.wikipedia.org/wiki/Excitation_temperature

    The excitation temperature can even be negative for a system with inverted levels (such as a maser). In observations of the 21 cm line of hydrogen , the apparent value of the excitation temperature is often called the "spin temperature".

  3. Electron - Wikipedia

    en.wikipedia.org/wiki/Electron

    Electrons in metals also behave as if they were free. In reality the particles that are commonly termed electrons in metals and other solids are quasi-electrons—quasiparticles, which have the same electrical charge, spin, and magnetic moment as real electrons but might have a different mass. [134]

  4. Spinon - Wikipedia

    en.wikipedia.org/wiki/Spinon

    The electron can always be theoretically considered as a bound state of the three, with the spinon carrying the spin of the electron, the orbiton carrying the orbital location and the holon carrying the charge, but in certain conditions they can behave as independent quasiparticles.

  5. Spin (physics) - Wikipedia

    en.wikipedia.org/wiki/Spin_(physics)

    The conventional definition of the spin quantum number is s = ⁠ n / 2 ⁠, where n can be any non-negative integer. Hence the allowed values of s are 0, ⁠ 1 / 2 ⁠, 1, ⁠ 3 / 2 ⁠, 2, etc. The value of s for an elementary particle depends only on the type of particle and cannot be altered in any known way (in contrast to the spin ...

  6. Electron excitation - Wikipedia

    en.wikipedia.org/wiki/Electron_excitation

    Within a semiconductor crystal lattice, thermal excitation is a process where lattice vibrations provide enough energy to transfer electrons to a higher energy band such as a more energetic sublevel or energy level. [3] When an excited electron falls back to a state of lower energy, it undergoes electron relaxation (deexcitation [4]).

  7. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    Electrons are affected by two thermodynamic forces [from the charge, ∇(E F /e c) where E F is the Fermi level and e c is the electron charge and temperature gradient, ∇(1/T)] because they carry both charge and thermal energy, and thus electric current j e and heat flow q are described with the thermoelectric tensors (A ee, A et, A te, and A ...

  8. Excited state - Wikipedia

    en.wikipedia.org/wiki/Excited_state

    Atoms can be excited by heat, electricity, or light. The hydrogen atom provides a simple example of this concept.. The ground state of the hydrogen atom has the atom's single electron in the lowest possible orbital (that is, the spherically symmetric "1s" wave function, which, so far, has been demonstrated to have the lowest possible quantum numbers).

  9. Wet electrons - Wikipedia

    en.wikipedia.org/wiki/Wet_electrons

    Wet electrons are characterized by their intermediate energy state, which is above the ground state energy of water but below the energy level of a free electron. This state is highly reactive due to its excess energy, making wet electrons potent reducing agents capable of engaging in various chemical reactions.