When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    A similar theorem states that K 4 and K 2,3 are the forbidden minors for the set of outerplanar graphs. Although the RobertsonSeymour theorem extends these results to arbitrary minor-closed graph families, it is not a complete substitute for these results, because it does not provide an explicit description of the obstruction set for any family.

  3. Petersen family - Wikipedia

    en.wikipedia.org/wiki/Petersen_family

    As the RobertsonSeymour theorem shows, many important families of graphs can be characterized by a finite set of forbidden minors: for instance, according to Wagner's theorem, the planar graphs are exactly the graphs that have neither the complete graph K 5 nor the complete bipartite graph K 3,3 as minors.

  4. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    The theorem is stated in the seventeenth of a series of 23 papers by Neil Robertson and Paul Seymour. Its proof is very long and involved. Its proof is very long and involved. Kawarabayashi & Mohar (2007) and Lovász (2006) are surveys accessible to nonspecialists, describing the theorem and its consequences.

  5. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    Another result relating the four-color theorem to graph minors is the snark theorem announced by Robertson, Sanders, Seymour, and Thomas, a strengthening of the four-color theorem conjectured by W. T. Tutte and stating that any bridgeless 3-regular graph that requires four colors in an edge coloring must have the Petersen graph as a minor. [15]

  6. Friedman's SSCG function - Wikipedia

    en.wikipedia.org/wiki/Friedman's_SSCG_function

    The RobertsonSeymour theorem proves that subcubic graphs (simple or not) are well-founded by homeomorphic embeddability, implying such a sequence cannot be infinite. Then, by applying KÅ‘nig's lemma on the tree of such sequences under extension, for each value of k there is a sequence with maximal length.

  7. Graph minors theorem - Wikipedia

    en.wikipedia.org/?title=Graph_minors_theorem&...

    Download QR code; Print/export Download as PDF; Printable version; In other projects Appearance. move to sidebar hide. ... RobertsonSeymour theorem; Retrieved from ...

  8. Pathwidth - Wikipedia

    en.wikipedia.org/wiki/Pathwidth

    If a family F of graphs is closed under taking minors (every minor of a member of F is also in F), then by the RobertsonSeymour theorem F can be characterized as the graphs that do not have any minor in X, where X is a finite set of forbidden minors. [42]

  9. Well-quasi-ordering - Wikipedia

    en.wikipedia.org/wiki/Well-quasi-ordering

    Embedding between countable scattered linear order types is a well-quasi-order (Laver's theorem). Embedding between countable boolean algebras is a well-quasi-order. This follows from Laver's theorem and a theorem of Ketonen. Finite graphs ordered by a notion of embedding called "graph minor" is a well-quasi-order (RobertsonSeymour theorem).