Ad
related to: radar signal processing steps
Search results
Results From The WOW.Com Content Network
Pulse-Doppler signal processing is a radar and CEUS performance enhancement strategy that allows small high-speed objects to be detected in close proximity to large slow moving objects. Detection improvements on the order of 1,000,000:1 are common.
Space-time adaptive processing (STAP) is a signal processing technique most commonly used in radar systems. It involves adaptive array processing algorithms to aid in target detection. Radar signal processing benefits from STAP in areas where interference is a problem (i.e. ground clutter, jamming, etc.). Through careful application of STAP, it ...
The chirp pulse compression process transforms a long duration frequency-coded pulse into a narrow pulse of greatly increased amplitude. It is a technique used in radar and sonar systems because it is a method whereby a narrow pulse with high peak power can be derived from a long duration pulse with low peak power.
Continuous-wave radar (CW radar) is a type of radar system where a known stable frequency continuous wave radio energy is transmitted and then received from any reflecting objects. [1] Individual objects can be detected using the Doppler effect , which causes the received signal to have a different frequency from the transmitted signal ...
Signal processing is employed in radar systems to reduce the radar interference effects. Signal processing techniques include moving target indication, Pulse-Doppler signal processing, moving target detection processors, correlation with secondary surveillance radar targets, space-time adaptive processing, and track-before-detect.
Pulse compression is a signal processing technique commonly used by radar, sonar and echography to either increase the range resolution when pulse length is constrained or increase the signal to noise ratio when the peak power and the bandwidth (or equivalently range resolution) of the transmitted signal are constrained.
Transition to track is automatic for detections that produce a lock. This is essential for semi-active radar homing that requires velocity information obtained by the launch platform radar. Transition to track is manual for non-Newtonian signal sources, but additional signal processing can be used to automate the process.
Modern radars generally perform all of these MTI techniques as part of a wider suite of signal processing being carried out by digital signal processors. MTI may be specialized in terms of the type of clutter and environment: airborne MTI ( AMTI ), ground MTI ( GMTI ), etc., or may be combined mode: stationary and moving target indication ( SMTI ).