When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ackermann's formula - Wikipedia

    en.wikipedia.org/wiki/Ackermann's_Formula

    with observability matrix. Here it is important to note, that the observability matrix and the system matrix are transposed: and A T. Ackermann's formula can also be applied on continuous-time observed systems.

  3. Controllability Gramian - Wikipedia

    en.wikipedia.org/wiki/Controllability_Gramian

    In control theory, we may need to find out whether or not a system such as ˙ = + () = + is controllable, where , , and are, respectively, , , and matrices for a system with inputs, state variables and outputs.

  4. Controllability - Wikipedia

    en.wikipedia.org/wiki/Controllability

    Controllability is an important property of a control system and plays a crucial role in many control problems, such as stabilization of unstable systems by feedback, or optimal control. Controllability and observability are dual aspects of the same problem.

  5. Kalman decomposition - Wikipedia

    en.wikipedia.org/wiki/Kalman_decomposition

    In control theory, a Kalman decomposition provides a mathematical means to convert a representation of any linear time-invariant (LTI) control system to a form in which the system can be decomposed into a standard form which makes clear the observable and controllable components of the system.

  6. Observability - Wikipedia

    en.wikipedia.org/wiki/Observability

    Observability is a measure of how well internal states of a system can be inferred from knowledge of its external outputs. In control theory, the observability and controllability of a linear system are mathematical duals.

  7. Algebraic Riccati equation - Wikipedia

    en.wikipedia.org/wiki/Algebraic_Riccati_equation

    For the DARE, the control is = (+) and the closed loop state transfer matrix is = (+) which is stable if and only if all of its eigenvalues are strictly inside the unit circle of the complex plane. A solution to the algebraic Riccati equation can be obtained by matrix factorizations or by iterating on the Riccati equation.

  8. Full state feedback - Wikipedia

    en.wikipedia.org/wiki/Full_state_feedback

    Full state feedback (FSF), or pole placement, is a method employed in feedback control system theory to place the closed-loop poles of a plant in predetermined locations in the s-plane. [1] Placing poles is desirable because the location of the poles corresponds directly to the eigenvalues of the system, which control the characteristics of the ...

  9. Control-Lyapunov function - Wikipedia

    en.wikipedia.org/wiki/Control-Lyapunov_function

    It is often difficult to find a control-Lyapunov function for a given system, but if one is found, then the feedback stabilization problem simplifies considerably. For the control affine system ( 2 ), Sontag's formula (or Sontag's universal formula ) gives the feedback law k : R n → R m {\displaystyle k:\mathbb {R} ^{n}\to \mathbb {R} ^{m ...