When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    The RobertsonSeymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]

  3. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.

  4. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.

  5. Graph minors theorem - Wikipedia

    en.wikipedia.org/?title=Graph_minors_theorem&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"

  6. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    This states that families of graphs closed under the graph minor operation may be characterized by a finite set of forbidden minors. As part of this work, Robertson and Seymour also proved the graph structure theorem describing the graphs in these families. [6] Additional major results in Robertson's research include the following:

  7. Category:Graph minor theory - Wikipedia

    en.wikipedia.org/wiki/Category:Graph_minor_theory

    Pages in category "Graph minor theory" The following 33 pages are in this category, out of 33 total. ... RobertsonSeymour theorem; S. Shallow minor; Snark (graph ...

  8. Forbidden graph characterization - Wikipedia

    en.wikipedia.org/wiki/Forbidden_graph...

    Graph minor Wagner's theorem: Outerplanar graphs: K 4 and K 2,3: Graph minor Diestel (2000), [1] p. 107: Outer 1-planar graphs: Six forbidden minors Graph minor Auer et al. (2013) [2] Graphs of fixed genus: A finite obstruction set Graph minor Diestel (2000), [1] p. 275: Apex graphs: A finite obstruction set Graph minor [3] Linklessly ...

  9. Petersen family - Wikipedia

    en.wikipedia.org/wiki/Petersen_family

    Neil Robertson, Paul Seymour, and Robin Thomas used the Petersen family as part of a similar characterization of linkless embeddings of graphs, embeddings of a given graph into Euclidean space in such a way that every cycle in the graph is the boundary of a disk that is not crossed by any other part of the graph. [1]

  1. Related searches robertson seymour graph minor test of value analysis template google docs

    robertson seymour graph minorrobertson and seymour theorem