When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Robertson–Seymour theorem - Wikipedia

    en.wikipedia.org/wiki/RobertsonSeymour_theorem

    The RobertsonSeymour theorem states that finite undirected graphs and graph minors form a well-quasi-ordering. The graph minor relationship does not contain any infinite descending chain, because each contraction or deletion reduces the number of edges and vertices of the graph (a non-negative integer). [8]

  3. Graph minor - Wikipedia

    en.wikipedia.org/wiki/Graph_minor

    An edge contraction is an operation that removes an edge from a graph while simultaneously merging the two vertices it used to connect. An undirected graph H is a minor of another undirected graph G if a graph isomorphic to H can be obtained from G by contracting some edges, deleting some edges, and deleting some isolated vertices.

  4. Graph structure theorem - Wikipedia

    en.wikipedia.org/wiki/Graph_structure_theorem

    A minor of a graph G is any graph H that is isomorphic to a graph that can be obtained from a subgraph of G by contracting some edges. If G does not have a graph H as a minor, then we say that G is H-free. Let H be a fixed graph. Intuitively, if G is a huge H-free graph, then there ought to be a "good reason" for this.

  5. Graph minors theorem - Wikipedia

    en.wikipedia.org/?title=Graph_minors_theorem&...

    Retrieved from "https://en.wikipedia.org/w/index.php?title=Graph_minors_theorem&oldid=1102375387"

  6. Neil Robertson (mathematician) - Wikipedia

    en.wikipedia.org/wiki/Neil_Robertson_(mathematician)

    This states that families of graphs closed under the graph minor operation may be characterized by a finite set of forbidden minors. As part of this work, Robertson and Seymour also proved the graph structure theorem describing the graphs in these families. [6] Additional major results in Robertson's research include the following:

  7. Planar cover - Wikipedia

    en.wikipedia.org/wiki/Planar_cover

    Since every minor of a planar graph is itself planar, this gives a planar cover of the minor G. Because the graphs with planar covers are closed under the operation of taking minors, it follows from the RobertsonSeymour theorem that they may be characterized by a finite set of forbidden minors. [7] A graph is a forbidden minor for this ...

  8. AOL Mail

    mail.aol.com

    Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!

  9. Non-constructive algorithm existence proofs - Wikipedia

    en.wikipedia.org/wiki/Non-constructive_algorithm...

    By RobertsonSeymour theorem, any set of finite graphs contains only a finite number of minor-minimal elements. In particular, the set of "yes" instances has a finite number of minor-minimal elements. Given an input graph G, the following "algorithm" solves the above problem: For every minor-minimal element H: If H is a minor of G then return ...