Search results
Results From The WOW.Com Content Network
English: What it does is use diode clamps to eliminate over and undershoot. The "trick" is that instead of clamping to +5 and GND they clamp to the output of two regulated voltages. This allows the clamping diodes to turn on earlier and is therefore better at eliminating overshoot and undershoot.
A negative unbiased clamp is the opposite of the equivalent positive clamp. In the positive cycle of the input AC signal, the diode is forward biased and conducts, charging the capacitor to the peak positive value of V IN. During the negative cycle, the diode is reverse biased and thus does not conduct.
For a step input, the percentage overshoot (PO) is the maximum value minus the step value divided by the step value. In the case of the unit step, the overshoot is just the maximum value of the step response minus one. Also see the definition of overshoot in an electronics context.
A transient-voltage-suppression diode can respond to over-voltages faster than other common over-voltage protection components such as varistors or gas discharge tubes. The actual clamping occurs in roughly one picosecond, but in a practical circuit the inductance of the wires leading to the device imposes a higher limit. This makes transient ...
In electronics, a step recovery diode (SRD, snap-off diode or charge-storage diode or memory varactor [a]) is a semiconductor junction diode with the ability to generate extremely short pulses. It has a variety of uses in microwave (MHz to GHz range) electronics as pulse generator or parametric amplifier .
There is also a recovery concern: a diode's current will not decrease immediately when switching from forward-biased to reverse-biased, because discharging its stored charge takes a finite amount of time (t rr or reverse recovery time). [1] In a diode OR gate, if two or more of the inputs are high and one switches to low, recovery issues will ...
Baker clamp is a generic name for a class of electronic circuits that reduce the storage time of a switching bipolar junction transistor (BJT) by applying a nonlinear negative feedback through various kinds of diodes. The reason for slow turn-off times of saturated BJTs is the stored charge in the base.
The coil diode clamp makes the relay turn off slower ( = /) and thus increases contact arc [clarification needed] if with a motor load which also needs a snubber. The diode clamp works well for coasting a uni-directional motor to a stop, but for bi-directional motors, a bipolar TVS is used.