Search results
Results From The WOW.Com Content Network
The thylakoid ATP synthase is a CF1FO-ATP synthase similar to the mitochondrial ATPase. It is integrated into the thylakoid membrane with the CF1-part sticking into the stroma. Thus, ATP synthesis occurs on the stromal side of the thylakoids where the ATP is needed for the light-independent reactions of photosynthesis.
ADP and Pi (inorganic phosphate) bind spontaneously to the three β subunits of the F 1 domain, so that every time it goes through a 120° rotation ATP is released (rotational catalysis). The F o domains sits within the membrane, spanning the phospholipid bilayer, while the F 1 domain extends into the cytosol of the cell to facilitate the use ...
In plants, ATP synthase is also present in chloroplasts (CF 1 F O-ATP synthase). The enzyme is integrated into thylakoid membrane; the CF 1-part sticks into stroma, where dark reactions of photosynthesis (also called the light-independent reactions or the Calvin cycle) and ATP synthesis take place. The overall structure and the catalytic ...
In enzymology, a chloroplast protein-transporting ATPase (EC 3.6.3.52) is an enzyme that catalyzes the chemical reaction ATP + H 2 O ⇌ {\displaystyle \rightleftharpoons } ADP + phosphate Thus, the two substrates of this enzyme are ATP and H 2 O , whereas its two products are ADP and phosphate .
ATPases (or ATP synthases) are membrane-bound enzyme complexes/ion transporters that combine ATP synthesis and/or hydrolysis with the transport of protons across a membrane. ATPases can harness the energy from a proton gradient, using the flux of ions across the membrane via the ATPase proton channel to drive the synthesis of ATP. Some ATPases ...
This reflux releases free energy produced during the generation of the oxidized forms of the electron carriers (NAD + and Q) with energy provided by O 2. The free energy is used to drive ATP synthesis, catalyzed by the F 1 component of the complex. [13] Coupling with oxidative phosphorylation is a key step for ATP production.
ATP synthase, also called complex V, is the final enzyme in the oxidative phosphorylation pathway. This enzyme is found in all forms of life and functions in the same way in both prokaryotes and eukaryotes. [67] The enzyme uses the energy stored in a proton gradient across a membrane to drive the synthesis of ATP from ADP and phosphate (P i).
Peter D. Mitchell proposed the chemiosmotic hypothesis in 1961. [1] In brief, the hypothesis was that most adenosine triphosphate (ATP) synthesis in respiring cells comes from the electrochemical gradient across the inner membranes of mitochondria by using the energy of NADH and FADH 2 formed during the oxidative breakdown of energy-rich molecules such as glucose.