Search results
Results From The WOW.Com Content Network
If a gaseous emission sample is analyzed and found to contain water vapor and a pollutant concentration of say 40 ppmv, then 40 ppmv should be designated as the "wet basis" pollutant concentration. The following equation can be used to correct the measured "wet basis" concentration to a "dry basis" concentration: [3]
If a gaseous emission sample is analyzed and found to contain water vapor and a pollutant concentration of say 40 ppmv, then 40 ppmv should be designated as the "wet basis" pollutant concentration. The following equation can be used to correct the measured "wet basis" concentration to a "dry basis" concentration:
Fluorescein aqueous solutions, diluted from 10,000 to 1 parts-per-million in intervals of 10 fold dilution. At 1 ppm the solution is a very pale yellow. At 1 ppm the solution is a very pale yellow. As the concentration increases the colour becomes a more vibrant yellow, then orange, with the final 10,000 ppm a deep red colour.
For example, if there are 10 grams of salt (the solute) dissolved in 1 litre of water (the solvent), this solution has a certain salt concentration . If one adds 1 litre of water to this solution, the salt concentration is reduced. The diluted solution still contains 10 grams of salt (0.171 moles of NaCl).
At 20 °C (68 °F) one liter of water can dissolve about 357 grams of salt, a concentration of 26.3 percent by weight (% w/w). At 100 °C (212 °F) (the boiling temperature of pure water), the amount of salt that can be dissolved in one liter of water increases to about 391 grams, a concentration of 28.1% w/w.
The grain per gallon (gpg) is a unit of water hardness defined as 1 grain (64.8 milligrams) of calcium carbonate dissolved in 1 US gallon of water (3.785412 L). It translates into 1 part in about 58,000 parts of water or 17.1 parts per million (ppm). Also called Clark degree (in terms of an imperial gallon).
To create the solution, 11.6 g NaCl is placed in a volumetric flask, dissolved in some water, then followed by the addition of more water until the total volume reaches 100 mL. The density of water is approximately 1000 g/L and its molar mass is 18.02 g/mol (or 1/18.02 = 0.055 mol/g). Therefore, the molar concentration of water is
where TDS is expressed in mg/L and EC is the electrical conductivity in microsiemens per centimeter at 25 °C. The conversion factor k e varies between 0.55 and 0.8. [5] Some TDS meters use an electrical conductivity measurement to the ppm using the above formula. Regarding units, 1 ppm indicates 1 mg of dissolved solids per 1,000 g of water. [6]