Search results
Results From The WOW.Com Content Network
Synthetic-aperture radar (SAR) is a form of radar that is used to create two-dimensional images or three-dimensional reconstructions of objects, such as landscapes. [1] SAR uses the motion of the radar antenna over a target region to provide finer spatial resolution than conventional stationary beam-scanning radars.
Synthetic-aperture radar (SAR) is a form of radar which moves a real aperture or antenna through a series of positions along the objects to provide distinctive long-term coherent-signal variations. This can be used to obtain higher resolution.
However, since humans reflect far less radar energy than metal does, these systems require sophisticated technology to isolate human targets and moreover to process any sort of detailed image. Through-the-wall radars can be made with Ultra Wideband impulse radar, micro-Doppler radar, and synthetic aperture radar (SAR). [5] Imaging radar; 3D radar
Synthetic aperture radar (SAR) allow for an angular resolution beyond real beamwidth by moving the aperture over the target, and adding the echoes coherently. Architecture : The field of view is scanned with a highly directive frequency-orthogonal (slotted waveguide), spatially orthogonal (switched beamforming networks), or time-orthogonal beams.
The AN/APY-10 is an American multifunction radar developed for the U.S. Navy's Boeing P-8 Poseidon maritime patrol and surveillance aircraft. [1] AN/APY-10 is the latest descendant of a radar family originally developed by Texas Instruments, and now Raytheon after it acquired the radar business of TI, for Lockheed P-3 Orion, the predecessor of P-8.
An interferogram is generated by processing two synthetic-aperture radar images before and after a geophysical event like an earthquake. Corrections for atmospheric variations are an important stage of InSAR data processing in many study areas to measure surface displacement because relative humidity differences of 20% can cause inaccuracies of ...
Side-looking airborne radar (SLAR) is an aircraft, [1] or satellite-mounted imaging radar pointing perpendicular to the direction of flight (hence side-looking). [2] A squinted (nonperpendicular) mode is also possible. SLAR can be fitted with a standard antenna (real aperture radar) or an antenna using synthetic aperture.
Furthermore, aperture thinning reduces the overall volume and mass of the antenna system. A disadvantage is the reduction of radiometric sensitivity (or increase in rms noise) of the image due to a decrease in signal-to-noise ratio for each measurement compared to a filled aperture. Pixel averaging is required for good radiometric sensitivity.