Search results
Results From The WOW.Com Content Network
All odd primes between 3 and 89, inclusive, are cluster primes. ... All prime numbers from 31 to 6,469,693,189 for free download. Lists of Primes at the Prime Pages.
Therefore, every prime number other than 2 is an odd number, and is called an odd prime. [10] Similarly, when written in the usual decimal system, all prime numbers larger than 5 end in 1, 3, 7, or 9. The numbers that end with other digits are all composite: decimal numbers that end in 0, 2, 4, 6, or 8 are even, and decimal numbers that end in ...
For example, 3 is a Mersenne prime as it is a prime number and is expressible as 2 2 − 1. [ 1 ] [ 2 ] The exponents p corresponding to Mersenne primes must themselves be prime, although the vast majority of primes p do not lead to Mersenne primes—for example, 2 11 − 1 = 2047 = 23 × 89 .
All prime numbers are odd, with one exception: the prime number 2. [14] All known perfect numbers are even; it is unknown whether any odd perfect numbers exist. [15] Goldbach's conjecture states that every even integer greater than 2 can be represented as a sum
Rowland (2008) proved that this sequence contains only ones and prime numbers. However, it does not contain all the prime numbers, since the terms gcd(n + 1, a n) are always odd and so never equal to 2. 587 is the smallest prime (other than 2) not appearing in the first 10,000 outcomes that are different from 1. Nevertheless, in the same paper ...
An odd prime number p is defined to be regular if it does not divide the class number of the pth cyclotomic field Q(ζ p), where ζ p is a primitive pth root of unity. The prime number 2 is often considered regular as well. The class number of the cyclotomic field is the number of ideals of the ring of integers Z(ζ p) up to equivalence.
A prime number is a natural number that has exactly two distinct natural number divisors: the number 1 and itself. To find all the prime numbers less than or equal to a given integer n by Eratosthenes' method: Create a list of consecutive integers from 2 through n: (2, 3, 4, ..., n). Initially, let p equal 2, the smallest prime number.
Goldbach's conjecture is one of the oldest and best-known unsolved problems in number theory and all of mathematics. It states that every even natural number greater than 2 is the sum of two prime numbers. The conjecture has been shown to hold for all integers less than 4 × 10 18 but remains unproven despite considerable effort.