Search results
Results From The WOW.Com Content Network
One kilogram-force, nominal weight of a 1 kg (2.2 lb) object at sea level on Earth [15] 10 N 50 N Average force to break the shell of a chicken egg from a young hen [16] 10 2 N 720 N Average force of human bite, measured at molars [17] 10 3 N kilonewton (kN) 5 kN The force applied by the engine of a small car during peak acceleration [citation ...
A newton is defined as 1 kg⋅m/s 2 (it is a named derived unit defined in terms of the SI base units). [1]: 137 One newton is, therefore, the force needed to accelerate one kilogram of mass at the rate of one metre per second squared in the direction of the applied force.
In engineering and physics, g c is a unit conversion factor used to convert mass to force or vice versa. [1] It is defined as = In unit systems where force is a derived unit, like in SI units, g c is equal to 1.
The pound-force is the product of one avoirdupois pound (exactly 0.45359237 kg) and the standard acceleration due to gravity, approximately 32.174049 ft/s 2 (9.80665 m/s 2). [ 5 ] [ 6 ] [ 7 ] The standard values of acceleration of the standard gravitational field ( g n ) and the international avoirdupois pound (lb) result in a pound-force equal ...
Boiler horsepower is a boiler's capacity to deliver steam to a steam engine and is not the same unit of power as the 550 ft lb/s definition. One boiler horsepower is equal to the thermal energy rate required to evaporate 34.5 pounds (15.6 kg) of fresh water at 212 °F (100 °C) in one hour.
Where is the burn time in seconds, is the instantaneous thrust in newtons, is average thrust in newtons, and is the total impulse in newton seconds. Class A is from 1.26 newton-seconds (conversion factor 4.448 N per lb. force) to 2.5 N·s, and each class is then double the total impulse of the preceding class, with Class B being 2.51 to 5.00 N·s.
The thrust-to-weight ratio is calculated by dividing the thrust (in SI units – in newtons) by the weight (in newtons) of the engine or vehicle.The weight (N) is calculated by multiplying the mass in kilograms (kg) by the acceleration due to gravity (m/s 2).
The BFQ is calculated as the regression of the quotient of an animal's bite force in newtons divided by its body mass in kilograms. [1] The BFQ was first applied by Wroe et al. (2005) in a paper comparing bite forces, body masses and prey size in a range of living and extinct mammalian carnivores, later expanded on by Christiansen & Wroe (2007 ...