Search results
Results From The WOW.Com Content Network
A dynamic load is one which changes with time fairly quickly in comparison to the structure's natural frequency. If it changes slowly, the structure's response may be determined with static analysis, but if it varies quickly (relative to the structure's ability to respond), the response must be determined with a dynamic analysis.
These load factors are, roughly, a ratio of the theoretical design strength to the maximum load expected in service. They are developed to help achieve the desired level of reliability of a structure [6] based on probabilistic studies that take into account the load's originating cause, recurrence, distribution, and static or dynamic nature. [7]
Static load testing is an in situ type of load testing used in geotechnical investigation to determine the bearing capacity of deep foundations prior to the construction of a building. It differs from the statnamic load test and dynamic load testing in that the pressure applied to the pile is slower.
This page was last edited on 12 January 2021, at 07:18 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
For example, consider a static uniform cantilever beam of length with an upward point load applied at the free end. Using boundary conditions, this may be modeled in two ways. In the first approach, the applied point load is approximated by a shear force applied at the free end.
Mechanical load is the physical stress on a mechanical system or component [1] leading to strain. Loads can be static or dynamic. Some loads are specified as part of the design criteria of a mechanical system. Depending on the usage, some mechanical loads can be measured by an appropriate test method in a laboratory or in the field.
Dynamic balancing was formerly the province of expensive equipment, but users with just occasional need to quench running vibrations may use the built in accelerometers of a smart phone and a spectrum analysis application. See ref 3 for example. A less tedious means of achieving dynamic balance requires just four measurements.
Deflection (f) in engineering. In structural engineering, deflection is the degree to which a part of a long structural element (such as beam) is deformed laterally (in the direction transverse to its longitudinal axis) under a load.