Search results
Results From The WOW.Com Content Network
Boundary value problems are similar to initial value problems.A boundary value problem has conditions specified at the extremes ("boundaries") of the independent variable in the equation whereas an initial value problem has all of the conditions specified at the same value of the independent variable (and that value is at the lower boundary of the domain, thus the term "initial" value).
Let be a domain (an open and connected set) in .Let be the Laplace operator, let be a bounded function on the boundary, and consider the problem: {() =, = (),It can be shown that if a solution exists, then () is the expected value of () at the (random) first exit point from for a canonical Brownian motion starting at .
The MFS has proved particularly effective for certain classes of problems such as inverse, [10] unbounded domain, and free-boundary problems. [11] Some techniques have been developed to cure the fictitious boundary problem in the MFS, such as the boundary knot method, singular boundary method, and regularized meshless method.
The method of images (or method of mirror images) is a mathematical tool for solving differential equations, in which boundary conditions are satisfied by combining a solution not restricted by the boundary conditions with its possibly weighted mirror image. Generally, original singularities are inside the domain of interest but the function is ...
Otsu's method is related to Fisher's linear discriminant, and was created to binarize the histogram of pixels in a grayscale image by optimally picking the black/white threshold that minimizes intra-class variance and maximizes inter-class variance within/between grayscales assigned to black and white pixel classes.
In machine learning and statistical classification, multiclass classification or multinomial classification is the problem of classifying instances into one of three or more classes (classifying instances into one of two classes is called binary classification). For example, deciding on whether an image is showing a banana, peach, orange, or an ...
Trending: Maker of the $60,000 foldable home has 3 factory buildings, 600+ houses built, and big plans to solve housing — you can become an investor for $0.80 per share today.
In machine learning, one-class classification (OCC), also known as unary classification or class-modelling, tries to identify objects of a specific class amongst all objects, by primarily learning from a training set containing only the objects of that class, [1] although there exist variants of one-class classifiers where counter-examples are used to further refine the classification boundary.