When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Ligand_field_theory

    The greater stabilization that results from metal-to-ligand bonding is caused by the donation of negative charge away from the metal ion, towards the ligands. This allows the metal to accept the σ bonds more easily. The combination of ligand-to-metal σ-bonding and metal-to-ligand π-bonding is a synergic effect, as each enhances the other.

  3. Inverted ligand field theory - Wikipedia

    en.wikipedia.org/wiki/Inverted_ligand_field_theory

    Ligand field molecular orbital (MO) bonding regimes for Werner-type (left), covalent (middle), and inverted ligand fields. [1] At the transition-metal - main group boundary, metal cations in organometallic complexes are more electronegative than the relatively more electropositive ligand atoms which act as z-type ligands.

  4. Polyhedral skeletal electron pair theory - Wikipedia

    en.wikipedia.org/wiki/Polyhedral_skeletal...

    The orbital diagram breaks down as follows: The 18 framework molecular orbitals, (MOs), derived from the 18 boron atomic orbitals are: 1 bonding MO at the center of the cluster and 5 antibonding MOs from the 6 sp-radial hybrid orbitals; 6 bonding MOs and 6 antibonding MOs from the 12 tangential p-orbitals.

  5. Molecular orbital theory - Wikipedia

    en.wikipedia.org/wiki/Molecular_orbital_theory

    Molecular orbital theory was seen as a competitor to valence bond theory in the 1930s, before it was realized that the two methods are closely related and that when extended they become equivalent. Molecular orbital theory is used to interpret ultraviolet–visible spectroscopy (UV–VIS). Changes to the electronic structure of molecules can be ...

  6. 18-electron rule - Wikipedia

    en.wikipedia.org/wiki/18-electron_rule

    Compounds that obey the 18-electron rule are typically "exchange inert". Examples include [Co(NH 3) 6]Cl 3, Mo(CO) 6, and [Fe(CN) 6] 4−.In such cases, in general ligand exchange occurs via dissociative substitution mechanisms, wherein the rate of reaction is determined by the rate of dissociation of a ligand.

  7. Cyclopentadienyl complex - Wikipedia

    en.wikipedia.org/wiki/Cyclopentadienyl_complex

    All 5 carbon atoms of a Cp ligand are bound to the metal in the vast majority of M–Cp complexes. This bonding mode is called η 5-coordination. The M–Cp bonding arises from overlap of the five π molecular orbitals of the Cp ligand with the s, p, and d orbitals on the metal. These complexes are referred to as π-complexes.

  8. Bent's rule - Wikipedia

    en.wikipedia.org/wiki/Bent's_rule

    [12] [27] Namely the atomic s and p orbital(s) are combined to give four sp i 3 = 1 ⁄ √ 4 (s + √ 3 p i) orbitals, three sp i 2 = 1 ⁄ √ 3 (s + √ 2 p i) orbitals, or two sp i = 1 ⁄ √ 2 (s + p i) orbitals. These combinations are chosen to satisfy two conditions. First, the total amount of s and p orbital contributions must be ...

  9. Trigonal prismatic molecular geometry - Wikipedia

    en.wikipedia.org/wiki/Trigonal_prismatic...

    The complex Mo(S−CH=CH−S) 3 is also trigonal prismatic, with each S−CH=CH−S group acting as a bidentate ligand with two sulfur atoms binding the metal atom. [3] Here the coordination geometry of the six sulfur atoms around the molybdenum is similar to that in the extended structure of molybdenum disulfide (MoS 2).