Search results
Results From The WOW.Com Content Network
It can be shown that if is a pseudo-random number generator for the uniform distribution on (,) and if is the CDF of some given probability distribution , then is a pseudo-random number generator for , where : (,) is the percentile of , i.e. ():= {: ()}. Intuitively, an arbitrary distribution can be simulated from a simulation of the standard ...
where a is an array object, the function randomInt(x) chooses a random integer between 1 and x, inclusive, and swapEntries(i, j) swaps the ith and jth entries in the array. In the preceding example, 52 and 53 are magic numbers, also not clearly related to each other. It is considered better programming style to write the following:
Varying prime (provided that they are odd prime numbers) generates pseudo-random that have independent random distribution. Note that when count is even (such as 100 by default, or 1000 in the examples above), the generated numbers (on the same page) are all odd or all even when you are varying the seed or prime , unless half of the calls use ...
These approaches combine a pseudo-random number generator (often in the form of a block or stream cipher) with an external source of randomness (e.g., mouse movements, delay between keyboard presses etc.). /dev/random – Unix-like systems; CryptGenRandom – Microsoft Windows; Fortuna
import random # this function checks whether or not the array is sorted def is_sorted (random_array): for i in range (1, len (random_array)): if random_array [i] < random_array [i-1]: return False return True # this function repeatedly shuffles the elements of the array until they are sorted def bogo_sort (random_array): while not is_sorted (random_array): random. shuffle (random_array) return ...
For Monte Carlo simulations, an LCG must use a modulus greater and preferably much greater than the cube of the number of random samples which are required. This means, for example, that a (good) 32-bit LCG can be used to obtain about a thousand random numbers; a 64-bit LCG is good for about 2 21 random samples (a little over two million), etc ...
The first attempt to provide researchers with a ready supply of random digits was in 1927, when the Cambridge University Press published a table of 41,600 digits developed by L.H.C. Tippett. In 1947, the RAND Corporation generated numbers by the electronic simulation of a roulette wheel; [ 5 ] the results were eventually published in 1955 as A ...
With a 128-bit block cipher, this would produce statistically identifiable deviations from randomness; for instance, generating 2 64 genuinely random 128-bit blocks would produce on average about one pair of identical blocks, but there are no repeated blocks at all among the first 2 128 produced by a 128-bit cipher in counter mode.