Search results
Results From The WOW.Com Content Network
The scientific study of probability is a modern development of mathematics. Gambling shows that there has been an interest in quantifying the ideas of probability throughout history, but exact mathematical descriptions arose much later. There are reasons for the slow development of the mathematics of probability.
A mathematical coincidence often involves an integer, and the surprising feature is the fact that a real number arising in some context is considered by some standard as a "close" approximation to a small integer or to a multiple or power of ten, or more generally, to a rational number with a small denominator.
This follows from the spherical excess formula for a spherical polygon and the fact that the vertex figure of the polyhedron {p,q} is a regular q-gon. The solid angle of a face subtended from the center of a platonic solid is equal to the solid angle of a full sphere (4 π steradians) divided by the number of faces.
Financial mathematics: Irving Fisher: Fisher's equation: Mathematics: Ronald Fisher: Fokker–Planck equation: Probability theory: Adriaan Fokker and Max Planck: Föppl–von Kármán equations: Elasticity: August Föppl and Theodore von Kármán: Fowler–Nordheim equation: Condensed matter physics: Ralph H. Fowler and Lothar Wolfgang Nordheim ...
Lottery mathematics is used to calculate probabilities of winning or losing a lottery game. It is based primarily on combinatorics, particularly the twelvefold way and combinations without replacement. It can also be used to analyze coincidences that happen in lottery drawings, such as repeated numbers appearing across different draws. [1
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
In probability theory and statistics, Campbell's theorem or the Campbell–Hardy theorem is either a particular equation or set of results relating to the expectation of a function summed over a point process to an integral involving the mean measure of the point process, which allows for the calculation of expected value and variance of the random sum.
The formula counting all functions N → X is not useful here, because the number of them grouped together by permutations of N varies from one function to another. Rather, as explained under combinations , the number of n -multicombinations from a set with x elements can be seen to be the same as the number of n -combinations from a set with x ...