Search results
Results From The WOW.Com Content Network
In physics and chemistry, the Lyman series is a hydrogen spectral series of transitions and resulting ultraviolet emission lines of the hydrogen atom as an electron goes from n ≥ 2 to n = 1 (where n is the principal quantum number), the lowest energy level of the electron (groundstate).
The spectral series of hydrogen, on a logarithmic scale. The emission spectrum of atomic hydrogen has been divided into a number of spectral series, with wavelengths given by the Rydberg formula. These observed spectral lines are due to the electron making transitions between two energy levels in an atom.
The Lyman-alpha transition in hydrogen in the presence of the spin–orbit interaction ... George Ellery Hale was the first to notice the Zeeman effect in the ...
Lyman-alpha, typically denoted by Ly-α, is a spectral line of hydrogen (or, more generally, of any one-electron atom) in the Lyman series. It is emitted when the atomic electron transitions from an n = 2 orbital to the ground state ( n = 1), where n is the principal quantum number .
1625 – First description of hydrogen by Johann Baptista van Helmont. First to use the word "gas". 1650 – Turquet de Mayerne obtains a gas or "inflammable air" by the action of dilute sulphuric acid on iron. 1662 – Boyle's law (gas law relating pressure and volume). 1670 – Robert Boyle produces hydrogen by reacting metals with acid.
As with many subsequent spectroscopy experiments, Newton's sources of white light included flames and stars, including the Sun. Subsequent studies of the nature of light include those of Hooke, [7] Huygens, [8] Young. [9] [10] Subsequent experiments with prisms provided the first indications that spectra were associated uniquely with chemical ...
The Lyman alpha line is the n=2 to n=1 transition of neutral hydrogen, and can be produced copiously by galaxies with young stars. [14] Moreover, Lyman alpha photons interact strongly with neutral hydrogen in intergalactic gas through resonant scattering, wherein neutral atoms in the ground (n=1) state absorb Lyman alpha photons and almost ...
A hydrogen molecule can absorb a far-ultraviolet photon (11.2 eV < energy of the photon < 13.6 eV) and make a transition from the ground electronic state X to excited state B (Lyman) or C (Werner). Radiative decay occurs rapidly. 10–15% of the decays occur into the vibrational continuum. This means that the hydrogen molecule has dissociated.