Ad
related to: why cscl used in centrifugation water system is better than normal pressure
Search results
Results From The WOW.Com Content Network
Historically a cesium chloride (CsCl) solution was often used, but more commonly used density gradients are sucrose or Percoll.This application requires a solution with high density and yet relatively low viscosity, and CsCl suits it because of its high solubility in water, high density owing to the large mass of Cs, as well as low viscosity and high stability of CsCl solutions.
The caesium chloride structure adopts a primitive cubic lattice with a two-atom basis, where both atoms have eightfold coordination. The chloride atoms lie upon the lattice points at the corners of the cube, while the caesium atoms lie in the holes in the center of the cubes; an alternative and exactly equivalent 'setting' has the caesium ions at the corners and the chloride ion in the center.
A decanter centrifuge increases the rate of settling through the use of continuous rotation, producing a G-force equivalent to between 1000 and 4000 G's. This reduces the settling time of the components by a large magnitude, whereby mixtures previously having to take hours to settle can be settled in a matter of seconds using a decanter centrifuge.
Differential centrifugation is the simplest method of fractionation by centrifugation, [9] commonly used to separate organelles and membranes found in cells. Organelles generally differ from each other in density and in size, making the use of differential centrifugation, and centrifugation in general, possible.
Differential centrifugation, on the other hand, does not utilize a density gradient, and the centrifugation is taken in increasing speeds. The different centrifugation speeds often create separation into not more than two fractions, so the supernatant can be separated further in additional centrifugation steps.
A solid bowl centrifuge is a type of centrifuge that uses the principle of sedimentation. A centrifuge is used to separate a mixture that consists of two substances with different densities by using the centrifugal force resulting from continuous rotation. It is normally used to separate solid-liquid, liquid-liquid, and solid-solid mixtures.
Values are given in terms of temperature necessary to reach the specified pressure. Valid results within the quoted ranges from most equations are included in the table for comparison. A conversion factor is included into the original first coefficients of the equations to provide the pressure in pascals (CR2: 5.006, SMI: -0.875).
A new semi-hermetic centrifuge was designed so that the feed pressure entering the system can be as low as possible by keeping the outlets open, which reduces the pressure drop across the separator. The stationary paring disc installed at the outlet also allows the process to be operated at low pressure.