Search results
Results From The WOW.Com Content Network
Statistical inference makes propositions about a population, using data drawn from the population with some form of sampling.Given a hypothesis about a population, for which we wish to draw inferences, statistical inference consists of (first) selecting a statistical model of the process that generates the data and (second) deducing propositions from the model.
An example of Neyman–Pearson hypothesis testing (or null hypothesis statistical significance testing) can be made by a change to the radioactive suitcase example. If the "suitcase" is actually a shielded container for the transportation of radioactive material, then a test might be used to select among three hypotheses: no radioactive source ...
A two-tailed test applied to the normal distribution. A one-tailed test, showing the p-value as the size of one tail.. In statistical significance testing, a one-tailed test and a two-tailed test are alternative ways of computing the statistical significance of a parameter inferred from a data set, in terms of a test statistic.
inferential statistics – the part of statistics that draws conclusions from data (using some model for the data): For example, inferential statistics involves selecting a model for the data, checking whether the data fulfill the conditions of a particular model, and with quantifying the involved uncertainty (e.g. using confidence intervals).
Bayesian statistics are based on a different philosophical approach for proof of inference.The mathematical formula for Bayes's theorem is: [|] = [|] [] []The formula is read as the probability of the parameter (or hypothesis =h, as used in the notation on axioms) “given” the data (or empirical observation), where the horizontal bar refers to "given".
Bayesian inference is an important technique in statistics, and especially in mathematical statistics. Bayesian updating is particularly important in the dynamic analysis of a sequence of data . Bayesian inference has found application in a wide range of activities, including science , engineering , philosophy , medicine , sport , and law .
Like univariate analysis, bivariate analysis can be descriptive or inferential. It is the analysis of the relationship between the two variables. [ 1 ] Bivariate analysis is a simple (two variable) special case of multivariate analysis (where multiple relations between multiple variables are examined simultaneously).
Classical inferential statistics emerged primarily during the second quarter of the 20th century, [6] largely in response to the controversial principle of indifference used in Bayesian probability at that time. The resurgence of Bayesian inference was a reaction to the limitations of frequentist probability, leading to further developments and ...