Search results
Results From The WOW.Com Content Network
The noble gases (helium, neon, argon, krypton, xenon and radon) were previously known as 'inert gases' because of their perceived lack of participation in any chemical reactions. The reason for this is that their outermost electron shells (valence shells) are completely filled, so that they have little tendency to gain or lose electrons.
The noble gases' inertness, or tendency not to react with other chemical substances, results from their electron configuration: their outer shell of valence electrons is "full", giving them little tendency to participate in chemical reactions. Only a few hundred noble gas compounds are known to exist. The inertness of noble gases makes them ...
Structure of a noble-gas atom caged within a buckminsterfullerene (C 60) molecule. Noble gases can also form endohedral fullerene compounds where the noble gas atom is trapped inside a fullerene molecule. In 1993, it was discovered that when C 60 is exposed to a pressure of around 3 bar of He or Ne, the complexes He@C 60 and Ne@C 60 are formed ...
Radon is a member of the zero-valence elements that are called noble gases, and is chemically not very reactive. The 3.8-day half-life of 222 Rn makes it useful in physical sciences as a natural tracer. Because radon is a gas at standard conditions, unlike its decay-chain parents, it can readily be extracted from them for research. [20]
From left to right in the periodic table, the nonmetals can be divided into the reactive nonmetals and the noble gases. The reactive nonmetals near the metalloids show some incipient metallic character, such as the metallic appearance of graphite, black phosphorus, selenium and iodine. The noble gases are almost completely inert.
It is usually applied to gases: a monatomic gas is a gas in which atoms are not bound to each other. Examples at standard conditions of temperature and pressure include all the noble gases ( helium , neon , argon , krypton , xenon , and radon ), though all chemical elements will be monatomic in the gas phase at sufficiently high temperature (or ...
Like the noble gases, the tendency for non-reactivity is due to the valence, the outermost electron shell, being complete in all the inert gases. [4] This is a tendency, not a rule, as all noble gases and other "inert" gases can react to form compounds under some conditions.
Noble gases were not known in 1844 when this classification arrangement was published. Hydrogen, carbon, nitrogen and oxygen were grouped together on account of their occurrence in living things. Phosphorus, sulfur and selenium were characterised as being solid; volatile at an average temperature between 100 degrees and red heat; and ...