Search results
Results From The WOW.Com Content Network
In mathematics, an algebraic expression is an expression built up from constants (usually, algebraic numbers) variables, and the basic algebraic operations: addition (+), subtraction (-), multiplication (×), division (÷), whole number powers, and roots (fractional powers).
Division can be calculated with an abacus. [14] Logarithm tables can be used to divide two numbers, by subtracting the two numbers' logarithms, then looking up the antilogarithm of the result. Division can be calculated with a slide rule by aligning the divisor on the C scale with the dividend on the D scale. The quotient can be found on the D ...
The quotient and remainder can then be determined as follows: Divide the first term of the dividend by the highest term of the divisor (meaning the one with the highest power of x, which in this case is x). Place the result above the bar (x 3 ÷ x = x 2).
For associative algebras, the definition can be simplified as follows: a non-zero associative algebra over a field is a division algebra if and only if it has a multiplicative identity element 1 and every non-zero element a has a multiplicative inverse (i.e. an element x with ax = xa = 1).
In mathematics, like terms are summands in a sum that differ only by a numerical factor. [1] Like terms can be regrouped by adding their coefficients. Typically, in a polynomial expression , like terms are those that contain the same variables to the same powers , possibly with different coefficients .
hcf – highest common factor of two numbers. (Also written as gcd.) H.M. – harmonic mean. HOL – higher-order logic. Hom – Hom functor. hom – hom-class. hot – higher order term. HOTPO – half or triple plus one. hvc – havercosine function. (Also written as havercos.) hyp – hypograph of a function.
3. Between two groups, may mean that the first one is a proper subgroup of the second one. > (greater-than sign) 1. Strict inequality between two numbers; means and is read as "greater than". 2. Commonly used for denoting any strict order. 3. Between two groups, may mean that the second one is a proper subgroup of the first one. ≤ 1.
Use divide and conquer to compute the product of the primes whose exponents are odd; Divide all of the exponents by two (rounding down to an integer), recursively compute the product of the prime powers with these smaller exponents, and square the result; Multiply together the results of the two previous steps