When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Partially ordered set - Wikipedia

    en.wikipedia.org/wiki/Partially_ordered_set

    A partially ordered set (poset for short) is an ordered pair = (,) consisting of a set (called the ground set of ) and a partial order on . When the meaning is clear from context and there is no ambiguity about the partial order, the set X {\displaystyle X} itself is sometimes called a poset.

  3. Dedekind–MacNeille completion - Wikipedia

    en.wikipedia.org/wiki/Dedekind–MacNeille...

    As Jourdan, Rampon & Jard (1994) observe, the problem of listing all cuts in a partially ordered set can be formulated as a special case of a simpler problem, of listing all maximal antichains in a different partially ordered set. If P is any partially ordered set, let Q be a partial order whose elements contain two copies of P: for each ...

  4. Lattice (order) - Wikipedia

    en.wikipedia.org/wiki/Lattice_(order)

    A lattice is an abstract structure studied in the mathematical subdisciplines of order theory and abstract algebra.It consists of a partially ordered set in which every pair of elements has a unique supremum (also called a least upper bound or join) and a unique infimum (also called a greatest lower bound or meet).

  5. Duality (order theory) - Wikipedia

    en.wikipedia.org/wiki/Duality_(order_theory)

    In the mathematical area of order theory, every partially ordered set P gives rise to a dual (or opposite) partially ordered set which is often denoted by P op or P d.This dual order P op is defined to be the same set, but with the inverse order, i.e. x ≤ y holds in P op if and only if y ≤ x holds in P.

  6. Complete lattice - Wikipedia

    en.wikipedia.org/wiki/Complete_lattice

    In mathematics, a complete lattice is a partially ordered set in which all subsets have both a supremum and an infimum . A conditionally complete lattice satisfies at least one of these properties for bounded subsets. For comparison, in a general lattice, only pairs of elements need to have a supremum and an infimum. Every non-empty finite ...

  7. Least fixed point - Wikipedia

    en.wikipedia.org/wiki/Least_fixed_point

    The function f(x) = x 2 − 4 has two fixed points, shown as the intersection with the blue line; its least one is at 1/2 − √ 17 /2.. In order theory, a branch of mathematics, the least fixed point (lfp or LFP, sometimes also smallest fixed point) of a function from a partially ordered set ("poset" for short) to itself is the fixed point which is less than each other fixed point, according ...

  8. Hasse diagram - Wikipedia

    en.wikipedia.org/wiki/Hasse_diagram

    A Hasse diagram of the factors of 60 ordered by the is-a-divisor-of relation. In order theory, a Hasse diagram (/ ˈ h æ s ə /; German:) is a type of mathematical diagram used to represent a finite partially ordered set, in the form of a drawing of its transitive reduction.

  9. Möbius inversion formula - Wikipedia

    en.wikipedia.org/wiki/Möbius_inversion_formula

    The statement of the general Möbius inversion formula [for partially ordered sets] was first given independently by Weisner (1935) and Philip Hall (1936); both authors were motivated by group theory problems. Neither author seems to have been aware of the combinatorial implications of his work and neither developed the theory of Möbius functions.