When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Matrix_decomposition

    In the mathematical discipline of linear algebra, a matrix decomposition or matrix factorization is a factorization of a matrix into a product of matrices. There are many different matrix decompositions; each finds use among a particular class of problems.

  3. Eigendecomposition of a matrix - Wikipedia

    en.wikipedia.org/wiki/Eigendecomposition_of_a_matrix

    This characteristic allows spectral matrices to be fully diagonalizable, meaning they can be decomposed into simpler forms using eigendecomposition. This decomposition process reveals fundamental insights into the matrix's structure and behavior, particularly in fields such as quantum mechanics, signal processing, and numerical analysis. [6]

  4. Singular value decomposition - Wikipedia

    en.wikipedia.org/wiki/Singular_value_decomposition

    Two-sided Jacobi SVD algorithm—a generalization of the Jacobi eigenvalue algorithm—is an iterative algorithm where a square matrix is iteratively transformed into a diagonal matrix. If the matrix is not square the QR decomposition is performed first and then the algorithm is applied to the R {\displaystyle R} matrix.

  5. Matrix splitting - Wikipedia

    en.wikipedia.org/wiki/Matrix_splitting

    If, for an arbitrary n × n matrix M, M has nonnegative entries, we write M ≥ 0. If M has only positive entries, we write M > 0. Similarly, if the matrix M 1 − M 2 has nonnegative entries, we write M 1 ≥ M 2. Definition: A = B − C is a regular splitting of A if B −1 ≥ 0 and C ≥ 0. We assume that matrix equations of the form

  6. Cholesky decomposition - Wikipedia

    en.wikipedia.org/wiki/Cholesky_decomposition

    In linear algebra, the Cholesky decomposition or Cholesky factorization (pronounced / ʃ ə ˈ l ɛ s k i / shə-LES-kee) is a decomposition of a Hermitian, positive-definite matrix into the product of a lower triangular matrix and its conjugate transpose, which is useful for efficient numerical solutions, e.g., Monte Carlo simulations.

  7. Vectorization (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Vectorization_(mathematics)

    For a symmetric matrix A, the vector vec(A) contains more information than is strictly necessary, since the matrix is completely determined by the symmetry together with the lower triangular portion, that is, the n(n + 1)/2 entries on and below the main diagonal. For such matrices, the half-vectorization is sometimes more useful than the ...

  8. Crout matrix decomposition - Wikipedia

    en.wikipedia.org/wiki/Crout_matrix_decomposition

    In linear algebra, the Crout matrix decomposition is an LU decomposition which decomposes a matrix into a lower triangular matrix (L), an upper triangular matrix (U) and, although not always needed, a permutation matrix (P). It was developed by Prescott Durand Crout. [1] The Crout matrix decomposition algorithm differs slightly from the ...

  9. Tucker decomposition - Wikipedia

    en.wikipedia.org/wiki/Tucker_decomposition

    For a 3rd-order tensor , where is either or , Tucker Decomposition can be denoted as follows, = () where is the core tensor, a 3rd-order tensor that contains the 1-mode, 2-mode and 3-mode singular values of , which are defined as the Frobenius norm of the 1-mode, 2-mode and 3-mode slices of tensor respectively.