Search results
Results From The WOW.Com Content Network
In educational assessment, T-score is a standard score Z shifted and scaled to have a mean of 50 and a standard deviation of 10. [ 14 ] [ 15 ] [ 16 ] In bone density measurements, the T-score is the standard score of the measurement compared to the population of healthy 30-year-old adults, and has the usual mean of 0 and standard deviation of 1.
Looking up the z-score in a table of the standard normal distribution cumulative probability, we find that the probability of observing a standard normal value below −2.47 is approximately 0.5 − 0.4932 = 0.0068.
There is no single accepted name for this number; it is also commonly referred to as the "standard normal deviate", "normal score" or "Z score" for the 97.5 percentile point, the .975 point, or just its approximate value, 1.96. If X has a standard normal distribution, i.e. X ~ N(0,1),
Since probability tables cannot be printed for every normal distribution, as there are an infinite variety of normal distributions, it is common practice to convert a normal to a standard normal (known as a z-score) and then use the standard normal table to find probabilities. [2]
where z is the standard score or "z-score", i.e. z is how many standard deviations above the mean the raw score is (z is negative if the raw score is below the mean). The reason for the choice of the number 21.06 is to bring about the following result: If the scores are normally distributed (i.e. they follow the "bell-shaped curve") then
The Z-score for bone density is the comparison to the "age-matched normal" and is usually used in cases of severe osteoporosis. This is the standard score or number of standard deviations a patient's bone mineral density differs from the average for their age, sex, and ethnicity. This value is used in premenopausal women, men under the age of ...
The constant factor 3 in the definition of the Z-factor is motivated by the normal distribution, for which more than 99% of values occur within three times standard deviations of the mean. If the data follow a strongly non-normal distribution, the reference points (e.g. the meaning of a negative value) may be misleading.
The standard score is calculated by the following formula: S = z σ + m {\textstyle S=z\sigma +m} S {\displaystyle S} and z {\displaystyle z} are standard scores .