Search results
Results From The WOW.Com Content Network
Potassium carbonate is the inorganic compound with the formula K 2 C O 3.It is a white salt, which is soluble in water and forms a strongly alkaline solution. It is deliquescent, often appearing as a damp or wet solid.
Potassium bicarbonate (IUPAC name: potassium hydrogencarbonate, also known as potassium acid carbonate) is the inorganic compound with the chemical formula KHCO 3. It is a white solid. It is a white solid.
As the name suggests, a non-nucleophilic base is a sterically hindered organic base that is a poor nucleophile. Normal bases are also nucleophiles, but often chemists seek the proton-removing ability of a base without any other functions.
It is isoelectronic with nitric acid HNO 3. The bicarbonate ion carries a negative one formal charge and is an amphiprotic species which has both acidic and basic properties. It is both the conjugate base of carbonic acid H 2 CO 3; and the conjugate acid of CO 2− 3, the carbonate ion, as shown by these equilibrium reactions: CO 2− 3 + 2 H 2 ...
Common name Chemical name (Formula) Potash fertilizer: Up to the early 20th century:potassium carbonate (K 2 CO 3). Beginning from the late 19th century: one or more of potassium chloride (KCl), potassium sulfate (K 2 SO 4) or potassium nitrate (KNO 3).
The following chart shows the solubility of various ionic compounds in water at 1 atm pressure and room temperature (approx. 25 °C, 298.15 K). "Soluble" means the ionic compound doesn't precipitate, while "slightly soluble" and "insoluble" mean that a solid will precipitate; "slightly soluble" compounds like calcium sulfate may require heat to precipitate.
It can be prepared by treating a potassium-containing base such as potassium hydroxide or potassium carbonate with acetic acid: CH 3 COOH + KOH → CH 3 COOK + H 2 O. This sort of reaction is known as an acid-base neutralization reaction. At saturation, the sesquihydrate in water solution (CH 3 COOK·1½H 2 O) begins to form semihydrate at 41.3 ...
Acid strength is the tendency of an acid, symbolised by the chemical formula, to dissociate into a proton, +, and an anion, .The dissociation or ionization of a strong acid in solution is effectively complete, except in its most concentrated solutions.