Search results
Results From The WOW.Com Content Network
Hypophosphorous acid was first prepared in 1816 by the French chemist Pierre Louis Dulong (1785–1838). [4]The acid is prepared industrially via a two step process: Firstly, elemental white phosphorus reacts with alkali and alkaline earth hydroxides to give an aqueous solution of hypophosphites:
Phosphoric acid (orthophosphoric acid, monophosphoric acid or phosphoric(V) acid) is a colorless, odorless phosphorus-containing solid, and inorganic compound with the chemical formula H 3 P O 4.
Dissociation of pyrophosphoric acid H 4 P 2 O 7 generates four anions, [H 4−k P 2 O 7] k−, where the charge k ranges from 1 to 4. The last one is pyrophosphate [P 2 O 7] 4−. The pyrophosphates are mostly water-soluble.
Hypophosphoric acid can be prepared by the reaction of red phosphorus with sodium chlorite at room temperature. [2]2 P + 2 NaClO 2 + 2 H 2 O → Na 2 H 2 P 2 O 6 + 2 HCl. A mixture of hypophosphoric acid, phosphorous acid (H 3 PO 3) and phosphoric acid (H 3 PO 4) is produced when white phosphorus oxidises in air when partially immersed in water.
In chemistry, a phosphate is an anion, salt, functional group or ester derived from a phosphoric acid.It most commonly means orthophosphate, a derivative of orthophosphoric acid, a.k.a. phosphoric acid H 3 PO 4.
The reaction of an acid in water solvent is often described as a dissociation + + where HA is a proton acid such as acetic acid, CH 3 COOH. The double arrow means that this is an equilibrium process, with dissociation and recombination occurring at the same time.
In molecular spectroscopy, the Birge–Sponer method or Birge–Sponer plot is a way to calculate the dissociation energy of a molecule. This method takes its name from Raymond Thayer Birge and Hertha Sponer, the two physical chemists that developed it.
Example Bjerrum plot: Change in carbonate system of seawater from ocean acidification.. A Bjerrum plot (named after Niels Bjerrum), sometimes also known as a Sillén diagram (after Lars Gunnar Sillén), or a Hägg diagram (after Gunnar Hägg) [1] is a graph of the concentrations of the different species of a polyprotic acid in a solution, as a function of pH, [2] when the solution is at ...