Search results
Results From The WOW.Com Content Network
The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection , used for marine navigation with constant compass bearing .
Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.
For the special antiderivatives involving trigonometric functions, see Trigonometric integral. [1] Generally, if the function is any trigonometric function, and is its derivative, = + In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
where is the inverse Gudermannian function, the integral of the secant function. There are a number of reasons why this particular antiderivative is worthy of special attention: The technique used for reducing integrals of higher odd powers of secant to lower ones is fully present in this, the simplest case. The other cases are done in the same ...
The following is a list of integrals (anti-derivative functions) of hyperbolic functions. For a complete list of integral functions, see list of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration.
Jensen's inequality generalizes the statement that a secant line of a convex function lies above its graph. Visualizing convexity and Jensen's inequality. In mathematics, Jensen's inequality, named after the Danish mathematician Johan Jensen, relates the value of a convex function of an integral to the integral of the convex function.
This visualization also explains why integration by parts may help find the integral of an inverse function f −1 (x) when the integral of the function f(x) is known. Indeed, the functions x(y) and y(x) are inverses, and the integral ∫ x dy may be calculated as above from knowing the integral ∫ y dx.
For a complete list of integral formulas, see lists of integrals. In all formulas the constant a is assumed to be nonzero, and C denotes the constant of integration . For each inverse hyperbolic integration formula below there is a corresponding formula in the list of integrals of inverse trigonometric functions .