When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Spline (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Spline_(mathematics)

    The next most simple spline has degree 1. It is also called a linear spline. A closed linear spline (i.e, the first knot and the last are the same) in the plane is just a polygon. A common spline is the natural cubic spline. A cubic spline has degree 3 with continuity C 2, i.e. the values and first and second derivatives are continuous. Natural ...

  3. Spline interpolation - Wikipedia

    en.wikipedia.org/wiki/Spline_interpolation

    The relations are n − 1 linear equations for the n + 1 values k 0, k 1, ..., k n. For the elastic rulers being the model for the spline interpolation, one has that to the left of the left-most "knot" and to the right of the right-most "knot" the ruler can move freely and will therefore take the form of a straight line with q′′ = 0.

  4. Smoothing spline - Wikipedia

    en.wikipedia.org/wiki/Smoothing_spline

    Smoothing splines are related to, but distinct from: Regression splines. In this method, the data is fitted to a set of spline basis functions with a reduced set of knots, typically by least squares. No roughness penalty is used. (See also multivariate adaptive regression splines.) Penalized splines. This combines the reduced knots of ...

  5. Linear interpolation - Wikipedia

    en.wikipedia.org/wiki/Linear_interpolation

    A description of linear interpolation can be found in the ancient Chinese mathematical text called The Nine Chapters on the Mathematical Art (九章算術), [1] dated from 200 BC to AD 100 and the Almagest (2nd century AD) by Ptolemy. The basic operation of linear interpolation between two values is commonly used in computer graphics.

  6. Multivariate interpolation - Wikipedia

    en.wikipedia.org/wiki/Multivariate_interpolation

    Note that similar generalizations can be made for other types of spline interpolations, including Hermite splines. In regards to efficiency, the general formula can in fact be computed as a composition of successive C I N T {\displaystyle \mathrm {CINT} } -type operations for any type of tensor product splines, as explained in the tricubic ...

  7. Monotone cubic interpolation - Wikipedia

    en.wikipedia.org/wiki/Monotone_cubic_interpolation

    The following JavaScript implementation takes a data set and produces a monotone cubic spline interpolant function: /* * Monotone cubic spline interpolation * Usage example listed at bottom; this is a fully-functional package.

  8. Spline wavelet - Wikipedia

    en.wikipedia.org/wiki/Spline_wavelet

    If the separation x r+1 - x r, where r is any integer, between the successive knots in the set of knots is a constant, the spline is called a cardinal spline. The set of integers Z = {. . ., -2, -1, 0, 1, 2, . . .} is a standard choice for the set of knots of a cardinal spline. Unless otherwise specified, it is generally assumed that the set of ...

  9. Piecewise linear function - Wikipedia

    en.wikipedia.org/wiki/Piecewise_linear_function

    A piecewise linear function of two arguments (top) and the convex polytopes on which it is linear (bottom) The notion of a piecewise linear function makes sense in several different contexts. Piecewise linear functions may be defined on n -dimensional Euclidean space , or more generally any vector space or affine space , as well as on piecewise ...