Search results
Results From The WOW.Com Content Network
The Fourier number can be derived by nondimensionalizing the time-dependent diffusion equation.As an example, consider a rod of length that is being heated from an initial temperature by imposing a heat source of temperature > at time = and position = (with along the axis of the rod).
Joseph Fourier introduced sine and cosine transforms (which correspond to the imaginary and real components of the modern Fourier transform) in his study of heat transfer, where Gaussian functions appear as solutions of the heat equation. The Fourier transform can be formally defined as an improper Riemann integral, making it an integral ...
Fourier analysis has many scientific applications – in physics, partial differential equations, number theory, combinatorics, signal processing, digital image ...
The heat equation is a partial differential equation. Prior to Fourier's work, no solution to the heat equation was known in the general case, although particular solutions were known if the heat source behaved in a simple way, in particular, if the heat source was a sine or cosine wave.
The equation is much simpler and can help to understand better the physics of the materials without focusing on the dynamic of the heat transport process. It is widely used for simple engineering problems assuming there is equilibrium of the temperature fields and heat transport, with time.
Fourier series, a weighted sum of sinusoids having a common period, the result of Fourier analysis of a periodic function; Fourier analysis, the description of functions as sums of sinusoids; Fourier transform, the type of linear canonical transform that is the generalization of the Fourier series
Harmonic analysis is a branch of mathematics concerned with investigating the connections between a function and its representation in frequency.The frequency representation is found by using the Fourier transform for functions on unbounded domains such as the full real line or by Fourier series for functions on bounded domains, especially periodic functions on finite intervals.
Fourier transform (bottom) is zero except at discrete points. The inverse transform is a sum of sinusoids called Fourier series. Center-right: Original function is discretized (multiplied by a Dirac comb) (top). Its Fourier transform (bottom) is a periodic summation of the original transform.