Search results
Results From The WOW.Com Content Network
A Banach space is super-reflexive if all Banach spaces finitely representable in are reflexive, or, in other words, if no non-reflexive space is finitely representable in . The notion of ultraproduct of a family of Banach spaces [ 14 ] allows for a concise definition: the Banach space X {\displaystyle X} is super-reflexive when its ultrapowers ...
The topological dual of -Banach space deduced from by any restriction scalar will be denoted ′. (It is of interest only if is a complex space because if is a -space then ′ = ′. James compactness criterion — Let X {\displaystyle X} be a Banach space and A {\displaystyle A} a weakly closed nonempty subset of X . {\displaystyle X.}
Tsirelson space, a reflexive Banach space in which neither nor can be embedded. W.T. Gowers construction of a space X {\displaystyle X} that is isomorphic to X ⊕ X ⊕ X {\displaystyle X\oplus X\oplus X} but not X ⊕ X {\displaystyle X\oplus X} serves as a counterexample for weakening the premises of the Schroeder–Bernstein theorem [ 1 ]
In mathematics, the Milman–Pettis theorem states that every uniformly convex Banach space is reflexive.. The theorem was proved independently by D. Milman (1938) and B. J. Pettis (1939).
The unit sphere can be replaced with the closed unit ball in the definition. Namely, a normed vector space is uniformly convex if and only if for every < there is some > so that, for any two vectors and in the closed unit ball (i.e. ‖ ‖ and ‖ ‖) with ‖ ‖, one has ‖ + ‖ (note that, given , the corresponding value of could be smaller than the one provided by the original weaker ...
Many Sobolev spaces are reflexive Banach spaces and therefore bounded subsets are weakly precompact by Alaoglu's theorem. Thus the theorem implies that bounded subsets are weakly sequentially precompact, and therefore from every bounded sequence of elements of that space it is possible to extract a subsequence which is weakly converging in the ...
In a non-reflexive Banach space, such as the Lebesgue space () of all bounded sequences, Riesz’s lemma does not hold for =. [ 5 ] However, every finite dimensional normed space is a reflexive Banach space, so Riesz’s lemma does holds for α = 1 {\displaystyle \alpha =1} when the normed space is finite-dimensional, as will now be shown.
The Tsirelson space T* is reflexive (Tsirel'son (1974)) and finitely universal, which means that for some constant C ≥ 1, the space T* contains C-isomorphic copies of every finite-dimensional normed space, namely, for every finite-dimensional normed space X, there exists a subspace Y of the Tsirelson space with multiplicative Banach–Mazur distance to X less than C.