When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Pauli matrices - Wikipedia

    en.wikipedia.org/wiki/Pauli_matrices

    The fact that the Pauli matrices, along with the identity matrix I, form an orthogonal basis for the Hilbert space of all 2 × 2 complex matrices , over , means that we can express any 2 × 2 complex matrix M as = + where c is a complex number, and a is a 3-component, complex vector.

  3. Spinors in three dimensions - Wikipedia

    en.wikipedia.org/wiki/Spinors_in_three_dimensions

    There were some precursors to Cartan's work with 2×2 complex matrices: Wolfgang Pauli had used these matrices so intensively that elements of a certain basis of a four-dimensional subspace are called Pauli matrices σ i, so that the Hermitian matrix is written as a Pauli vector. [2] In the mid 19th century the algebraic operations of this algebra of four complex dimensions were studied as ...

  4. Fierz identity - Wikipedia

    en.wikipedia.org/wiki/Fierz_identity

    The Fierz identities are also sometimes called the Fierz–Pauli–Kofink identities, as Pauli and Kofink described a general mechanism for producing such identities. There is a version of the Fierz identities for Dirac spinors and there is another version for Weyl spinors. And there are versions for other dimensions besides 3+1 dimensions.

  5. 3D rotation group - Wikipedia

    en.wikipedia.org/wiki/3D_rotation_group

    Rossmann (2002) uses for a definition derivatives of smooth curve segments in SO(3) through the identity taken at the identity, in which case it is harder. [11] For a fixed A ≠ 0, e tA, −∞ < t < ∞ is a one-parameter subgroup along a geodesic in SO(3). That this gives a one-parameter subgroup follows directly from properties of the ...

  6. Two-state quantum system - Wikipedia

    en.wikipedia.org/wiki/Two-state_quantum_system

    The matrix is the 2×2 identity matrix and the matrices with =,, are the Pauli matrices. This decomposition simplifies the analysis of the system, especially in the time-independent case, where the values of α , β , γ {\displaystyle \alpha ,\beta ,\gamma } and δ {\displaystyle \delta } are constants.

  7. Pauli group - Wikipedia

    en.wikipedia.org/wiki/Pauli_group

    The Pauli group is generated by the Pauli matrices, and like them it is named after Wolfgang Pauli. The Pauli group on n {\displaystyle n} qubits, G n {\displaystyle G_{n}} , is the group generated by the operators described above applied to each of n {\displaystyle n} qubits in the tensor product Hilbert space ( C 2 ) ⊗ n {\displaystyle ...

  8. List of named matrices - Wikipedia

    en.wikipedia.org/wiki/List_of_named_matrices

    A Hankel matrix. Identity matrix: A square diagonal matrix, with all entries on the main diagonal equal to 1, and the rest 0. a ij = δ ij: Lehmer matrix: a ij = min(i, j) ÷ max(i, j). A positive symmetric matrix. Matrix of ones: A matrix with all entries equal to one. a ij = 1. Pascal matrix: A matrix containing the entries of Pascal's ...

  9. Spinor - Wikipedia

    en.wikipedia.org/wiki/Spinor

    In 3 Euclidean dimensions, the single spinor representation is 2-dimensional and quaternionic. The existence of spinors in 3 dimensions follows from the isomorphism of the groups SU(2) ≅ Spin(3) that allows us to define the action of Spin(3) on a complex 2-component column (a spinor); the generators of SU(2) can be written as Pauli matrices.