When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Bivector - Wikipedia

    en.wikipedia.org/wiki/Bivector

    Parallel plane segments with the same orientation and area corresponding to the same bivector a ∧ b. [1]In mathematics, a bivector or 2-vector is a quantity in exterior algebra or geometric algebra that extends the idea of scalars and vectors.

  3. Bilinear form - Wikipedia

    en.wikipedia.org/wiki/Bilinear_form

    In mathematics, a bilinear form is a bilinear map V × V → K on a vector space V (the elements of which are called vectors) over a field K (the elements of which are called scalars). In other words, a bilinear form is a function B : V × V → K that is linear in each argument separately: B(u + v, w) = B(u, w) + B(v, w) and B(λu, v) = λB(u, v)

  4. Differential geometry - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry

    Differential geometry has applications to both Lagrangian mechanics and Hamiltonian mechanics. Symplectic manifolds in particular can be used to study Hamiltonian systems. Riemannian geometry and contact geometry have been used to construct the formalism of geometrothermodynamics which has found applications in classical equilibrium thermodynamics.

  5. Bilinear map - Wikipedia

    en.wikipedia.org/wiki/Bilinear_map

    Let , and be three vector spaces over the same base field.A bilinear map is a function: such that for all , the map (,) is a linear map from to , and for all , the map (,) is a linear map from to .

  6. Differential geometry of surfaces - Wikipedia

    en.wikipedia.org/wiki/Differential_geometry_of...

    The normal space to S at p, which is defined to consist of all normal vectors to S at p, is a one-dimensional linear subspace of ℝ 3 which is orthogonal to the tangent space T p S. As such, at each point p of S, there are two normal vectors of unit length (unit normal vectors).

  7. Ricci curvature - Wikipedia

    en.wikipedia.org/wiki/Ricci_curvature

    Suppose that (,) is an -dimensional Riemannian or pseudo-Riemannian manifold, equipped with its Levi-Civita connection.The Riemann curvature of is a map which takes smooth vector fields , , and , and returns the vector field (,):= [,] on vector fields,,.

  8. Blade (geometry) - Wikipedia

    en.wikipedia.org/wiki/Blade_(geometry)

    In the study of geometric algebras, a k-blade or a simple k-vector is a generalization of the concept of scalars and vectors to include simple bivectors, trivectors, etc. Specifically, a k-blade is a k-vector that can be expressed as the exterior product (informally wedge product) of 1-vectors, and is of grade k. In detail: [1] A 0-blade is a ...

  9. Inner product space - Wikipedia

    en.wikipedia.org/wiki/Inner_product_space

    As a further complication, in geometric algebra the inner product and the exterior (Grassmann) product are combined in the geometric product (the Clifford product in a Clifford algebra) – the inner product sends two vectors (1-vectors) to a scalar (a 0-vector), while the exterior product sends two vectors to a bivector (2-vector) – and in ...