Search results
Results From The WOW.Com Content Network
An Elementary Treatise on Fourier's Series: And Spherical, Cylindrical, and Ellipsoidal Harmonics, with Applications to Problems in Mathematical Physics (2 ed.). Ginn. p. 30. Carslaw, Horatio Scott (1921). "Chapter 7: Fourier's Series". Introduction to the Theory of Fourier's Series and Integrals, Volume 1 (2 ed.). Macmillan and Company. p. 196.
A Fourier series (/ ˈ f ʊr i eɪ,-i ər / [1]) is an expansion of a periodic function into a sum of trigonometric functions. The Fourier series is an example of a trigonometric series. [2] By expressing a function as a sum of sines and cosines, many problems involving the function become easier to analyze because trigonometric functions are ...
The coefficient functions a and b can be found by using variants of the Fourier cosine transform and the Fourier sine transform (the normalisations are, again, not standardised): = and = (). Older literature refers to the two transform functions, the Fourier cosine transform, a , and the Fourier sine transform, b .
The full cosine and sine interpolating polynomial, which gives rise to the DFT, was solved by Carl Friedrich Gauss in unpublished work around 1805, at which point he also derived a fast Fourier transform algorithm to evaluate it rapidly.
By applying Euler's formula (= + ), it can be shown (for real-valued functions) that the Fourier transform's real component is the cosine transform (representing the even component of the original function) and the Fourier transform's imaginary component is the negative of the sine transform (representing the odd component of the ...
This sum is called a Chebyshev series or a Chebyshev expansion. Since a Chebyshev series is related to a Fourier cosine series through a change of variables, all of the theorems, identities, etc. that apply to Fourier series have a Chebyshev counterpart. [16] These attributes include: The Chebyshev polynomials form a complete orthogonal system.
The sine and the cosine functions, for example, are used to describe simple harmonic motion, which models many natural phenomena, such as the movement of a mass attached to a spring and, for small angles, the pendular motion of a mass hanging by a string. The sine and cosine functions are one-dimensional projections of uniform circular motion.
This Fourier series (in frequency) is a continuous periodic function, whose periodicity is the sampling frequency /. The subscript 1 / T {\displaystyle 1/T} distinguishes it from the continuous Fourier transform S ( f ) {\displaystyle S(f)} , and from the angular frequency form of the DTFT.