Search results
Results From The WOW.Com Content Network
Intersecting, parallel and ultra parallel lines through a with respect to l in the hyperbolic plane. The parallel lines appear to intersect l just off the image. This is just an artifact of the visualisation. On a real hyperbolic plane the lines will get closer to each other and 'meet' in infinity.
The distance between two parallel lines in the plane is the minimum distance between any two points. Formula and proof. Because the lines are parallel, the ...
In Euclidean geometry, a parallelogram is a simple (non-self-intersecting) quadrilateral with two pairs of parallel sides. The opposite or facing sides of a parallelogram are of equal length and the opposite angles of a parallelogram are of equal measure.
Parallel (latitude), an imaginary east–west line circling a globe; Parallel of declination, used in astronomy; Parallel, a geometric term of location meaning "in the same direction" Parallel electrical circuits
In this case one gets a parallel surface on the opposite side of the surface (see similar diagram on the parallel curves of a circle). One easily checks: a parallel surface of a plane is a parallel plane in the common sense and the parallel surface of a sphere is a concentric sphere.
Though these terms themselves may be somewhat ambiguous, they are usually used in a context in which their meaning is clear. For example, when referring to a drive shaft it is clear what is meant by axial or radial directions. Or, in a free body diagram, one may similarly infer a sense of orientation by the forces or other vectors represented.
A reference to a standard or choice-free presentation of some mathematical object (e.g., canonical map, canonical form, or canonical ordering). The same term can also be used more informally to refer to something "standard" or "classic". For example, one might say that Euclid's proof is the "canonical proof" of the infinitude of primes.
Rather than characterize mathematics by deductive logic, intuitionism views mathematics as primarily about the construction of ideas in the mind: [9] The only possible foundation of mathematics must be sought in this construction under the obligation carefully to watch which constructions intuition allows and which not. [12] L. E. J. Brouwer 1907