Search results
Results From The WOW.Com Content Network
Lanthanide oxides: clockwise from top center: praseodymium, cerium, lanthanum, neodymium, samarium and gadolinium. The chemistry of the lanthanides is dominated by the +3 oxidation state, and in Ln III compounds the 6s electrons and (usually) one 4f electron are lost and the ions have the configuration [Xe]4f (n−1). [23]
Lanthanide metals react exothermically with hydrogen to form LnH 2, dihydrides. [1] With the exception of Eu and Yb, which resemble the Ba and Ca hydrides (non-conducting, transparent salt-like compounds),they form black pyrophoric, conducting compounds [6] where the metal sub-lattice is face centred cubic and the H atoms occupy tetrahedral sites. [1]
The lanthanides become harder as the series is traversed: as expected, lanthanum is a soft metal. Lanthanum has a relatively high resistivity of 615 nΩm at room temperature; in comparison, the value for the good conductor aluminium is only 26.50 nΩm. [28] [29] Lanthanum is the least volatile of the lanthanides. [30]
The rare-earth elements patterns observed in igneous rocks are primarily a function of the chemistry of the source where the rock came from, as well as the fractionation history the rock has undergone. [27] Fractionation is in turn a function of the partition coefficients of each element. Partition coefficients are responsible for the ...
For instance, like lanthanum, cerium, and neodymium, praseodymium nitrates form both 4:3 and 1:1 complexes with 18-crown-6, whereas the middle lanthanides from promethium to gadolinium can only form the 4:3 complex and the later lanthanides from terbium to lutetium cannot successfully coordinate to all the ligands.
Most lanthanides can use only three electrons as valence electrons, as afterwards the remaining 4f electrons are too strongly bound: cerium is an exception because of the stability of the empty f-shell in Ce 4+ and the fact that it comes very early in the lanthanide series, where the nuclear charge is still low enough until neodymium to allow ...
Like the other lanthanides, its most common oxidation state is +3, as in its oxide, halides, and other compounds. In aqueous solution, like compounds of other late lanthanides, soluble ytterbium compounds form complexes with nine water molecules. Because of its closed-shell electron configuration, its density, melting point and boiling point ...
Neodymium is the fourth member of the lanthanide series. In the periodic table, it appears between the lanthanides praseodymium to its left and the radioactive element promethium to its right, and above the actinide uranium. Its 60 electrons are arranged in the configuration [Xe]4f 4 6s 2, of which the six 4f and 6s electrons are valence.