When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Shannon–Hartley theorem - Wikipedia

    en.wikipedia.org/wiki/Shannon–Hartley_theorem

    The theorem establishes Shannon's channel capacity for such a communication link, a bound on the maximum amount of error-free information per time unit that can be transmitted with a specified bandwidth in the presence of the noise interference, assuming that the signal power is bounded, and that the Gaussian noise process is characterized by a ...

  3. Channel capacity - Wikipedia

    en.wikipedia.org/wiki/Channel_capacity

    The computational complexity of finding the Shannon capacity of such a channel remains ... This result is known as the Shannon–Hartley theorem. [11] When the SNR is ...

  4. Noisy-channel coding theorem - Wikipedia

    en.wikipedia.org/wiki/Noisy-channel_coding_theorem

    The channel capacity can be calculated from the physical properties of a channel; for a band-limited channel with Gaussian noise, using the Shannon–Hartley theorem. Simple schemes such as "send the message 3 times and use a best 2 out of 3 voting scheme if the copies differ" are inefficient error-correction methods, unable to asymptotically ...

  5. Information theory - Wikipedia

    en.wikipedia.org/wiki/Information_theory

    the mutual information, and the channel capacity of a noisy channel, including the promise of perfect loss-free communication given by the noisy-channel coding theorem; the practical result of the Shannon–Hartley law for the channel capacity of a Gaussian channel; as well as; the bit—a new way of seeing the most fundamental unit of information.

  6. Shannon capacity of a graph - Wikipedia

    en.wikipedia.org/wiki/Shannon_capacity_of_a_graph

    The Shannon capacity of a graph G is bounded from below by α(G), and from above by ϑ(G). [5] In some cases, ϑ(G) and the Shannon capacity coincide; for instance, for the graph of a pentagon, both are equal to √ 5. However, there exist other graphs for which the Shannon capacity and the Lovász number differ. [6]

  7. Entropy (information theory) - Wikipedia

    en.wikipedia.org/wiki/Entropy_(information_theory)

    The concept of information entropy was introduced by Claude Shannon in his 1948 paper "A Mathematical Theory of Communication", [2] [3] and is also referred to as Shannon entropy. Shannon's theory defines a data communication system composed of three elements: a source of data, a communication channel, and a receiver. The "fundamental problem ...

  8. Mutual information - Wikipedia

    en.wikipedia.org/wiki/Mutual_information

    Shannon's source coding theorem; Channel capacity; Noisy-channel coding theorem; Shannon–Hartley theorem ... The equation above can be derived as follows for a ...

  9. Signal-to-noise ratio - Wikipedia

    en.wikipedia.org/wiki/Signal-to-noise_ratio

    In the above formula, P is measured in units of power, such as watts (W) or milliwatts (mW), and the signal-to-noise ratio is a pure number. However, when the signal and noise are measured in volts (V) or amperes (A), which are measures of amplitude, [note 1] they must first be squared to obtain a quantity proportional to power, as shown below: