Search results
Results From The WOW.Com Content Network
Continental crust is a tertiary crust, formed at subduction zones through recycling of subducted secondary (oceanic) crust. [17] The average age of Earth's current continental crust has been estimated to be about 2.0 billion years. [20] Most crustal rocks formed before 2.5 billion years ago are located in cratons.
Secondary crust is formed by partial melting of mostly silicate materials in the mantle, and so is usually basaltic in composition. [1] This is the most common type of crust in the Solar System. Most of the surfaces of Mercury, Venus, Earth, and Mars comprise secondary crust, as do the lunar maria.
Another line of research follows up on this, proposing that differences in the densities of newly formed crystals caused separation of crustal rocks; upper crust largely composed of fractionated gabbros and lower crust composed of anorthosites. [13] The overall result of initial crystallisation formed a primordial crust roughly 60 km in depth. [13]
About 20% of the continental crust's current volume was formed by 3.0 Ga. [13] There was relatively rapid development on shield areas consisting of continental crust between 3.0 and 2.5 Ga. [12] During this time interval, about 60% of the continental crust's current volume was formed. [13] The remaining 20% has formed during the last 2.5 Ga.
The remaining 29.2% of Earth's crust is land, most of which is located in the form of continental landmasses within Earth's land hemisphere. Most of Earth's land is at least somewhat humid and covered by vegetation, while large sheets of ice at Earth's polar deserts retain more water than Earth's groundwater, lakes, rivers and atmospheric water ...
The thin parts are the oceanic crust, which underlies the ocean basins (5–10 km) and is mafic-rich [9] (dense iron-magnesium silicate mineral or igneous rock). [10] The thicker crust is the continental crust, which is less dense [11] and is felsic-rich (igneous rocks rich in elements that form feldspar and quartz). [12]
The tectonic plates of the lithosphere on Earth Earth cutaway from center to surface, the lithosphere comprising the crust and lithospheric mantle (detail not to scale). A lithosphere (from Ancient Greek λίθος (líthos) 'rocky' and σφαίρα (sphaíra) 'sphere') is the rigid, [1] outermost rocky shell of a terrestrial planet or natural satellite.
Eventually, the outer layer of the planet cooled to form a solid crust when water began accumulating in the atmosphere. The Moon formed soon afterwards, possibly as a result of the impact of a planetoid with the Earth. Outgassing and volcanic activity produced the primordial atmosphere.