Search results
Results From The WOW.Com Content Network
Constant sum: A game is a constant sum game if the sum of the payoffs to every player are the same for every single set of strategies. In these games, one player gains if and only if another player loses. A constant sum game can be converted into a zero sum game by subtracting a fixed value from all payoffs, leaving their relative order unchanged.
John Harsanyi – equilibrium theory (Nobel Memorial Prize in Economic Sciences in 1994) Monika Henzinger – algorithmic game theory and information retrieval; John Hicks – general equilibrium theory (including Kaldor–Hicks efficiency) Naira Hovakimyan – differential games and adaptive control; Peter L. Hurd – evolution of aggressive ...
A solved game is a game whose outcome (win, lose or draw) can be correctly predicted from any position, assuming that both players play perfectly.This concept is usually applied to abstract strategy games, and especially to games with full information and no element of chance; solving such a game may use combinatorial game theory or computer assistance.
An important notion in combinatorial game theory is that of the solved game. For example, tic-tac-toe is considered a solved game, as it can be proven that any game will result in a draw if both players play optimally. Deriving similar results for games with rich combinatorial structures is difficult.
Separately, game theory has played a role in online algorithms; in particular, the k-server problem, which has in the past been referred to as games with moving costs and request-answer games. [125] Yao's principle is a game-theoretic technique for proving lower bounds on the computational complexity of randomized algorithms , especially online ...
In game theory, a solution concept is a formal rule for predicting how a game will be played. These predictions are called "solutions", and describe which strategies will be adopted by players and, therefore, the result of the game. The most commonly used solution concepts are equilibrium concepts, most famously Nash equilibrium.
A Rubinstein bargaining model refers to a class of bargaining games that feature alternating offers through an infinite time horizon. The original proof is due to Ariel Rubinstein in a 1982 paper. [1] For a long time, the solution to this type of game was a mystery; thus, Rubinstein's solution is one of the most influential findings in game theory.
In game theory, fictitious play is a learning rule first introduced by George W. Brown. In it, each player presumes that the opponents are playing stationary (possibly mixed) strategies. In it, each player presumes that the opponents are playing stationary (possibly mixed) strategies.