Ad
related to: reinforced concrete pile design guidelines
Search results
Results From The WOW.Com Content Network
Logo of Eurocode 2 An example of a concrete structure. In the Eurocode series of European standards (EN) related to construction, Eurocode 2: Design of concrete structures (abbreviated EN 1992 or, informally, EC 2) specifies technical rules for the design of concrete, reinforced concrete and prestressed concrete structures, using the limit state design philosophy.
3 Code of Practices for plain and reinforced concrete etc. IS 456 – 2000 4 Methods of sampling and analysis of concrete IS 1199 – 1959 5 Recommended Guide Lines for Concrete Mix Design IS 10262 – 1982 (F) Curing Compound; 1 Standard test method for water retention & daylight reflection test on concrete. ASTM-C-156809
Driven piles are constructed of wood, reinforced concrete, or steel. Wooden piles are made from the trunks of tall trees. Concrete piles are available in square, octagonal, and round cross-sections (like Franki piles). They are reinforced with rebar and are often prestressed. Steel piles are either pipe piles or some sort of beam section (like ...
Small charges of concrete can be added while the base is being formed [6] to enlarge the base and improve the pile’s settlement performance. [3] Franki piles can be installed raked (or sloped) with a tilt of up to 4:1. [5] Raked Franki piles are always reinforced and are particularly suitable for structures subject to dynamic forces. [1]
Modern reinforced concrete can contain varied reinforcing materials made of steel, polymers or alternate composite material in conjunction with rebar or not. Reinforced concrete may also be permanently stressed (concrete in compression, reinforcement in tension), so as to improve the behavior of the final structure under working loads.
Once initial piles are set with concrete, other shafts are augured between them, slicing into the original piles, with the new ones receiving rebar. The finished result is a continuous wall of reinforced concrete that aids and protects workers during excavation. [citation needed]
It is used in conditions where the surface soil's load-bearing capacity is less than the anticipated design loads. A grade beam differs from a wall footing because a grade beam is designed for bending and typically spans between pile caps or caissons, while a wall footing bears on soil and transmits the weight of the wall directly into the ground.
Once this is defined, design code gives standard prescriptions for w/c ratio, the cement content, and the thickness of the concrete cover. This approach represents an improvement step for the durability design of reinforced concrete structures, it is suitable for the design of ordinary structures designed with traditional materials (Portland ...