When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Myoglobin - Wikipedia

    en.wikipedia.org/wiki/Myoglobin

    Like hemoglobin, myoglobin is a cytoplasmic protein that binds oxygen on a heme group. It harbors only one globulin group, whereas hemoglobin has four. Although its heme group is identical to those in Hb, Mb has a higher affinity for oxygen than does hemoglobin but fewer total oxygen-storage capacities. [22]

  3. Bohr effect - Wikipedia

    en.wikipedia.org/wiki/Bohr_effect

    The Bohr effect increases the efficiency of oxygen transportation through the blood. After hemoglobin binds to oxygen in the lungs due to the high oxygen concentrations, the Bohr effect facilitates its release in the tissues, particularly those tissues in most need of oxygen. When a tissue's metabolic rate increases, so does its carbon dioxide ...

  4. Oxygen–hemoglobin dissociation curve - Wikipedia

    en.wikipedia.org/wiki/Oxygen–hemoglobin...

    The oxygen–hemoglobin dissociation curve, also called the oxyhemoglobin dissociation curve or oxygen dissociation curve (ODC), is a curve that plots the proportion of hemoglobin in its saturated (oxygen-laden) form on the vertical axis against the prevailing oxygen tension on the horizontal axis. This curve is an important tool for ...

  5. Human iron metabolism - Wikipedia

    en.wikipedia.org/wiki/Human_iron_metabolism

    The human body needs iron for oxygen transport. Oxygen (O 2) is required for the functioning and survival of nearly all cell types. Oxygen is transported from the lungs to the rest of the body bound to the heme group of hemoglobin in red blood cells. In muscles cells, iron binds oxygen to myoglobin, which regulates its release.

  6. Heme - Wikipedia

    en.wikipedia.org/wiki/Heme

    When the situation is reversed (low pH and high carbon dioxide concentrations), hemoglobin will release oxygen into the tissues. This phenomenon, which states that hemoglobin's oxygen binding affinity is inversely proportional to both acidity and concentration of carbon dioxide, is known as the Bohr effect . [ 14 ]

  7. Cooperativity - Wikipedia

    en.wikipedia.org/wiki/Cooperativity

    The oxygen affinity of 3-oxy-hemoglobin is ~300 times greater than that of deoxy-hemoglobin. This behavior leads the affinity curve of hemoglobin to be sigmoidal, rather than hyperbolic as with the monomeric myoglobin. By the same process, the ability for hemoglobin to lose oxygen increases as fewer oxygen molecules are bound. [1]

  8. Hemoprotein - Wikipedia

    en.wikipedia.org/wiki/Hemoprotein

    Hemoglobin and myoglobin are examples of hemeproteins that respectively transport and store of oxygen in mammals and in some fish. [9] Hemoglobin is a quaternary protein that occurs in the red blood cell, whereas, myoglobin is a tertiary protein found in the muscle cells of mammals.

  9. Cooperative binding - Wikipedia

    en.wikipedia.org/wiki/Cooperative_binding

    The first description of cooperative binding to a multi-site protein was developed by A.V. Hill. [4] Drawing on observations of oxygen binding to hemoglobin and the idea that cooperativity arose from the aggregation of hemoglobin molecules, each one binding one oxygen molecule, Hill suggested a phenomenological equation that has since been named after him: